Skip to main content

Clinical and Biomedical Engineering in the Human Nose

  • Chapter
  • First Online:
Clinical and Biomedical Engineering in the Human Nose

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 573 Accesses

Abstract

The convergence of Computational Fluid Dynamics (CFD) with otorhinolaryngology has provided an avenue for a multidisciplinary approach to observe nasal physiology. This chapter provides a history of its beginnings to its advances that parallel with increased computational power, and a discussion on how it could be applied to specific clinical applications. Furthermore, the challenges in bringing the techniques to be used as a diagnostic for clinical practice is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Andersen, R. Sarangapani, R. Gentry, H. Clewell, T. Covington, C.B. Frederick, Application of a hybrid CFD-PBPK nasal dosimetry model in an inhalation risk assessment: an example with acrylic acid. Toxicol. Sci. 57(2), 312–325 (2000)

    Article  Google Scholar 

  2. U. Bockholt, W. Muller, G. Voss, U. Ecke, L. Klimek, Real-time simulation of tissue deformation for the nasal endoscopy simulator (NES). Comput. Aided Surg. 4(5), 281–285 (1999)

    Article  Google Scholar 

  3. H. Calmet, A.M. Gambaruto, A.J. Bates, M. Vazquez, G. Houzeaux, D.J. Doorly, Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput. Biol. Med. 69, 166–180 (2016)

    Article  Google Scholar 

  4. X.B. Chen, H.P. Lee, V.F.H. Chong, D.Y. Wang, Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model. The Laryngoscope 119(9), 1730–1736 (2009)

    Article  Google Scholar 

  5. X.B. Chen, H.P. Lee, V.F. Chong, D.Y. Wang, Impact of inferior turbinate hypertrophy on the aerodynamic pattern and physiological functions of the turbulent airflow - a CFD simulation model. Rhinology 48, 163–168 (2010)

    Google Scholar 

  6. S.-K. Chung, Y.R. Son, S.J. Shin, S.-K. Kim, Nasal airflow during respiratory cycle. Am. J. Rhinol. 20(4), 379–384 (2006)

    Article  Google Scholar 

  7. D. Elad, R. Liebenthal, B.L. Wenig, S. Einav, Analysis of air flow patterns in the human nose. Med. Biol. Eng. Comput. 31(6), 585–592 (1993)

    Article  Google Scholar 

  8. C.B. Frederick, L.G. Lomax, K.A. Black, L. Finch, H.E. Scribner, J.S. Kimbell, K.T. Morgan, R.P. Subramaniam, J.B. Morris, Use of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry comparisons of ester vapors. Toxicol. Appl. Pharmacol. 183(1), 23–40 (2002)

    Article  Google Scholar 

  9. A.M. Gambaruto, D.J. Taylor, D.J. Doorly, Decomposition and description of the nasal cavity form. Ann. Biomed. Eng. 40(5), 1142–1159 (2012)

    Article  Google Scholar 

  10. G.J.M. Garcia, N. Bailie, D.A. Martins, J.S. Kimbell, Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J. Appl. Physiol. 103(3), 1082–1092 (2007)

    Article  Google Scholar 

  11. K. Inthavong, J. Wen, Z. Tian, J. Tu, Numerical study of fibre deposition in a human nasal cavity. J. Aerosol Sci. 39(3), 253–265 (2008)

    Article  Google Scholar 

  12. K. Inthavong, Y.D. Shang, J.Y. Tu, Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Respir. Physiol. Neurobiol. 190(1), 54–61 (2014)

    Article  Google Scholar 

  13. K. Inthavong, A. Chetty, Y. Shang, J. Tu, Examining mesh independence for flow dynamics in the human nasal cavity. Comput. Biol. Med. 102, 40–50 (2018)

    Article  Google Scholar 

  14. G. Jo, S.-K. Chung, Y. Na, Numerical study of the effect of the nasal cycle on unilateral nasal resistance. Respir. Physiol. Neurobiol. 219, 58–68 (2015)

    Article  Google Scholar 

  15. K. Keyhani, P.W. Scherer, M.M. Mozell, Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117(4), 429–441 (1995)

    Article  Google Scholar 

  16. K. Keyhani, P. Scherer, M. Mozell, A numerical model of nasal odorant transport for the analysis of human olfaction. J. Theor. Biol. 186, 279–301 (1997)

    Article  Google Scholar 

  17. J.W. Kim, J. Xi, X.A. Si, Dynamic growth and deposition of hygroscopic aerosols in the nasal airway of a 5-year-old child. Int. J. Numer. Methods Biomed. Eng. 29(1), 17–39 (2013)

    Article  MathSciNet  Google Scholar 

  18. J. Kimbell, R. Subramaniam, Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhal. Toxicol. 13(5), 325–334 (2001)

    Article  Google Scholar 

  19. J. Kimbell, R. Segal, B. Asgharian, B. Wong, J. Schroeter, J. Southall, C. Dickens, G. Brace, F. Miller, Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J. Aerosol Med. 20(1), 59–74 (2007)

    Article  Google Scholar 

  20. M. Kleven, M.C. Melaaen, M. Reimers, J.S. Røtnes, L. Aurdal, P.G. Djupesland, Using computational fluid dynamics (CFD) to improve the bi-directional nasal drug delivery concept. Food Bioprod. Process. 83(2), 107–117 (2005)

    Article  Google Scholar 

  21. C.F. Lee, M.Z. Abdullah, K.A. Ahmad, I. Lutfi Shuaib, Standardization of Malaysian adult female nasal cavity. Comput. Math. Methods Med. 2013, 519071 (2013)

    Google Scholar 

  22. H.P. Lee, H.J. Poh, F.H. Chong, D.Y. Wang, Changes of airflow pattern in inferior turbinate hypertrophy: a computational fluid dynamics model. Am. J. Rhinol. Allergy 23(2), 153–158 (2009)

    Article  Google Scholar 

  23. J.-H. Lee, Y. Na, S.-K. Kim, S.-K. Chung, Unsteady flow characteristics through a human nasal airway. Respir. Physiol. Neurobiol. 172, 136–146 (2010)

    Google Scholar 

  24. C. Li, J. Jiang, H. Dong, K. Zhao, Computational modeling and validation of human nasal airflow under various breathing conditions. J. Biomech. 64, 59–68 (2017)

    Article  Google Scholar 

  25. J. Lindemann, T. Keck, K. Wiesmiller, B. Sander, H. Brambs, G. Rettinger, D. Pless, Nasal air temperature and airflow during respiration in numerical simulation based on multislice computed tomography scan. Am. J. Rhinol. 20, 219–223 (2006)

    Article  Google Scholar 

  26. S. Naftali, R. Schroter, J. Shiner, D. Elad, Transport phenomena in the human nasal cavity: a computational model. Ann. Biomed. Eng. 26, 831–839 (1998)

    Article  Google Scholar 

  27. S. Naftali, M. Rosenfeld, M. Wolf, D. Elad, The air-conditioning capacity of the human nose. Ann. Biomed. Eng. 33, 545–553 (2005)

    Article  Google Scholar 

  28. R.G. Patel, G.J.M. Garcia, D.O. Frank-Ito, J.S. Kimbell, J.S. Rhee, Simulating the nasal cycle with computational fluid dynamics. Otolaryngol.-Head Neck Surg. 152, 353–360 (2014)

    Article  Google Scholar 

  29. D. Pless, T. Keck, K. Wiesmiller, G. Rettinger, A. Aschoff, T. Fleiter, J. Lindemann, Numerical simulation of air temperature and airflow patterns in the human nose during expiration. Clin. Otolaryngol. 29(6), 642–647 (2004)

    Article  Google Scholar 

  30. C.M. Se, K. Inthavong, J. Tu, Unsteady particle deposition in a human nasal cavity during inhalation. J. Comput. Multiph. Flows 2(4), 207–218 (2010)

    Article  Google Scholar 

  31. R. Subramaniam, R. Richardson, K. Morgan, J.S. Kimbell, R. Guilmette, Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal. Toxicol. 10, 91–120 (1998)

    Google Scholar 

  32. D. Wexler, R. Segal, J. Kimbell, Aerodynamic effects of inferior turbinate reduction. Arch. Otolaryngol. Head Neck Surg. 131, 1102–1107 (2005)

    Article  Google Scholar 

  33. J. Xi, X. Si, J.W. Kim, A. Berlinski, Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. J. Aerosol Sci. 42(3), 156–173 (2011)

    Article  Google Scholar 

  34. G. Xiong, J. Zhan, H. Jiang, J. Li, L. Rong, G. Xu, Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am. J. Rhinol. 22, 477–482 (2008)

    Article  Google Scholar 

  35. G. Xiong, J. Zhan, K. Zuo, J. Li, L. Rong, G. Xu, Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Med. Biol. Eng. Comput. 46(11), 1161–1167 (2008)

    Article  Google Scholar 

  36. G. Yu, Z. Zhang, R. Lessmann, Fluid flow and particle diffusion in the human upper respiratory system. Aerosol Sci. Technol. 28(2), 146–158 (1998)

    Article  Google Scholar 

  37. K. Zhao, P.W. Scherer, S.A. Hajiloo, P. Dalton, Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem. Senses 29(5), 365–379 (2004)

    Article  Google Scholar 

  38. K. Zhao, P. Dalton, G.C. Yang, P.W. Scherer, Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose. Chem. Senses 31(2), 107–118 (2006)

    Article  Google Scholar 

  39. K. Zhao, E.A. Pribitkin, B.J. Cowart, D. Rosen, P.W. Scherer, P. Dalton, Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction. Am. J. Rhinol. 20(3), 308–316 (2006)

    Article  Google Scholar 

  40. K. Zhao, J. Craig, N. Cohen, N. Adappa, S. Khalili, J. Palmer, Sinus irrigations before and after surgery-visualization through computational fluid dynamics simulations. Laryngoscope 126, 90–96 (2016)

    Article  Google Scholar 

  41. J.H. Zhu, H.P. Lee, K.M. Lim, S.J. Lee, D.Y. Wang, Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation. Respir. Physiol. Neurobiol. 175(1), 62–69 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiao Inthavong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inthavong, K., Wong, E., Tu, J., Singh, N. (2021). Clinical and Biomedical Engineering in the Human Nose. In: Inthavong, K., Singh, N., Wong, E., Tu, J. (eds) Clinical and Biomedical Engineering in the Human Nose. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6716-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6716-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6715-5

  • Online ISBN: 978-981-15-6716-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics