Skip to main content

Abstract

Earlier, murine infection models were the preferred host for studying interaction between the host and the microbial pathogen. However, all pathogens do not infect mice and they do not always replicate human infections. Moreover, mammalian models are not very suitable for large scale screens due to high cost involved. Since Zebrafish (Danio rerio) are transparent in early development, genetically modifiable, and have functional innate immune system with neutrophils and macrophages similar to human counterparts, it has come to the forefront of biomedical research. This organism has been used to investigate wide varieties of viral, bacterial, and fungal pathogens illuminating our understanding of disease pathogenesis and host–pathogen interactions. Due to recent technical advancements, zebrafish has become a preferred model for infectious diseases for studying mechanisms of pathogenesis, virulence factors, response of the host immune system, immune evasion, drug resistance, and potential therapeutic applications. This chapter will describe zebrafish as a model host system for infectious diseases along with several advantages of using it to understand immune response, host–pathogen interactions and their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JP, Neely MN (2010) Trolling for the ideal model host: zebrafish take the bait. Future Microbiol 5(4):563–569

    Article  PubMed  Google Scholar 

  • Bhati S, Kumar V, Singh S, Singh J (2019) Synthesis, biological activities and docking studies of piperazine incorporated 1, 3, 4-oxadiazole derivatives. J Mol Str 1191:197–205

    Article  CAS  Google Scholar 

  • Brothers KM, Newman ZR, Wheeler RT (2011) Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. Eukaryot Cell 10(7):932–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brothers KM, Gratacap RL, Barker SE, Newman ZR, Norum A, Wheeler RT (2013) NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog 9(10):e1003634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv113

    Article  CAS  Google Scholar 

  • Chao CC, Hsu PC, Jen CF, Chen IH, Wang CH, Chan HC (2010) Zebrafish as a model host for Candida albicans infection. Infect Immun 78(6):2512–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YZ, Yang YL, Chu WL, You MS, Lo HJ (2015) Zebrafish egg infection model for studying Candida albicans adhesion factors. PLoS One 10(11):e0143048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clatworthy AE, Lee JS, Leibman M, Kostun Z, Davidson AJ, Hung DT (2009) Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect Immun 77(4):1293–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay H, Davis JM, Beery D, Huttenlocher A, Lyons SE, Ramakrishnan L (2007) Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2(1):29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronan MR, Tobin DM (2014) Fit for consumption: zebrafish as a model for tuberculosis. Dis Models Mech 7(7):777–784

    Article  CAS  Google Scholar 

  • Datta S, Singh J, Singh J, Singh S, Singh S (2018) Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test. Sus Environ Res 28(4):171–178

    Article  CAS  Google Scholar 

  • Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17(6):693–702

    Article  CAS  PubMed  Google Scholar 

  • Ding CB, Zhao Y, Zhang JP, Peng ZG, Song DQ, Jiang JD (2015) A zebrafish model for subgenomic hepatitis C virus replication. Int J Mol Med 35(3):791–797

    Article  CAS  PubMed  Google Scholar 

  • Goody MF, Sullivan C, Kim CH (2014) Studying the immune response to human viral infections using zebrafish. Dev Comp Immunol 46(1):84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall C, Flores MV, Storm T, Crosier K, Crosier P (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst S, Shah A, Mazon-Moya M, Marzola V, Jensen B, Reed A (2015) Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT path-way co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med 7(3):240–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    Article  CAS  Google Scholar 

  • Kaur P, Singh S, Kumar V, Singh N, Singh J (2018) Effect of rhizobacteria on arsenic uptake by macrophyte Eichhornia crassipes (Mart.) Solms. Int J Phytoremediation 20(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Kizy AE, Neely MN (2009) First Streptococcus pyogenes signature-tagged mutagenesis screen identifies novel virulence determinants. Infect Immun 77(5):1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox BP, Deng Q, Rood M, Eickhoff JC, Keller NP, Huttenlocher A (2014) Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae. Eukaryot Cell 13(10):1266–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox BP, Huttenlocher A, Keller NP (2017) Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae. Fungal Genet Biol 105:52–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Upadhyay N, Kumar V, Kaur S, Singh J, Singh S, Datta S (2014) Environmental exposure and health risks of the insecticide monocrotophos—a review. J Biodivers Environ Sci 5:111–120

    Google Scholar 

  • Kumar V, Singh S, Singh J, Upadhyay N (2015) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94(6):807–814

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kaur S, Singh S, Upadhyay N (2016) Unexpected formation of N′-phenyl-thiophosphorohydrazidic acid O, S-dimethyl ester from acephate: chemical, biotechnical and computational study. 3 Biotech 6(1):1

    Article  PubMed  Google Scholar 

  • Kumar V, Singh S, Singh R, Upadhyay N, Singh J (2017) Design, synthesis, and characterization of 2, 2-bis (2, 4-dinitrophenyl)-2-(phosphonatomethylamino) acetate as a herbicidal and biological active agent. J Chem Biol 10(4):179–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Singh S, Singh R, Upadhyay N, Singh J, Pant P, Singh R, Srivastava B, Singh A, Subhose V (2018a) Spectral, structural and energetic study of acephate, glyphosate, monocrotophos and phorate: an experimental and computational approach. J Taibah Uni Sci 12(1):69–78

    Article  Google Scholar 

  • Kumar V, Singh S, Singh A, Dixit AK, Shrivastava B, Kondalkar SA, Singh J, Singh R, Sidhu GK, Singh RP, Subhose V (2018b) Determination of phytochemical, antioxidant, antimicrobial, and protein binding qualities of hydroethanolic extract of Celastrus paniculatus. J Appl Biol Biotech 6(06):11–17

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Singh A, Dixit AK, Srivastava B, Sidhu GK, Singh R, Meena AK, Singh RP, Subhose V, Prakash O (2018c) Phytochemical, antioxidant, antimicrobial, and protein binding qualities of hydro-ethanolic extract of Tinospora cordifolia. J Biologically Active Products Nat 8(3):192–200

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Srivastava B, Bhadouria R, Singh R (2019a) Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J Environ Chem Eng 7(3):103094

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Singh R (2019b) Phytochemical constituents of guggul gum and their biological qualities. Mini-Rev Org Chem 16

    Google Scholar 

  • Kumar V, Singh S, Singh A, Subhose V, Prakash O (2019c) Assessment of heavy metal ions, essential metal ions, and antioxidant properties of the most common herbal drugs in Indian Ayurvedic hospital: for ensuring quality assurance of certain Ayurvedic drugs. Biocatal Agric Biotechnol 18:101018

    Article  Google Scholar 

  • Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1):9–28

    Article  CAS  PubMed  Google Scholar 

  • Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318

    Article  CAS  PubMed  Google Scholar 

  • Levitte S, Adams KN, Berg RD, Cosma CL, Urdahl KB, Ramakrishnan L (2016) Mycobacterial acid tolerance enables phagolysosomal survival and establishment of tuberculous infection in vivo. Cell Host Microbe 20(2):250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levraud JP, Disson O, Kissa K, Bonne I, Cossart P, Herbomel P, Lecuit M (2009) Real-time observation of Listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect Immun 77(9):3651–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu MW, Chao YM, Guo TC, Santi N, Evensen Ø, Kasani SK, Hong JR, Wu JL (2008) The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol Immunology 45(4):1146–1152

    Article  CAS  Google Scholar 

  • Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80(6):1281–1288

    Article  CAS  PubMed  Google Scholar 

  • McVicker G, Prajsnar TK, Williams A, Wagner NL, Boots M, Renshaw SA, Foster SJ (2014) Clonal expansion during Staphylococcus aureus infection dynamics reveals the effect of antibiotic intervention. PLoS Pathog 10(2):e1003959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32(7):745–757

    Article  CAS  PubMed  Google Scholar 

  • Mesureur J, Feliciano JR, Wagner N, Gomes MC, Zhang L, Blanco-Gonzalez M, van der Vaart M, O’Callaghan D, Meijer AH, Vergunst AC (2017) Macrophages, but not neutrophils, are critical for proliferation of Burkholderia cenocepacia and ensuing host-damaging inflammation. PLoS Pathog 13(6):e1006437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller J (2005) Large scale screen highlights the importance of capsule for virulence in the zoonotic pathogen, Streptococcus iniae. Infect Immun 73(2):921–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2016) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation 18(7):697–703

    Article  CAS  PubMed  Google Scholar 

  • Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P (2006) Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25(6):963–975

    Article  CAS  PubMed  Google Scholar 

  • Phelps HA, Neely MN (2005) Evolution of the zebrafish model: from development to immunity and infectious disease. Zebrafish 2(2):87–103

    Article  CAS  PubMed  Google Scholar 

  • Prajsnar TK, Cunliffe VT, Foster SJ, Renshaw SA (2008) A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cellular Microbiol 10(11):2312–2325

    Article  CAS  Google Scholar 

  • Prajsnar TK, Hamilton R, Garcia-Lara J, McVicker G, Williams A, Boots M, Foster SJ, Renshaw SA (2012) A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model. Cellular Microbiol 14(10):1600–1619

    Article  CAS  Google Scholar 

  • Redd MJ, Kelly G, Dunn G, Way M, Martin P (2006) Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton 63(7):415–422

    Article  CAS  PubMed  Google Scholar 

  • Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108(13):3976–3978

    Article  CAS  PubMed  Google Scholar 

  • Roca FJ, Ramakrishnan L (2013) TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153(3):521–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu GK, Singh S, Kumar V, Dhanjal DS, Datta S, Singh J (2019) Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Critic Rev Environ Sci Tech 49:1–53

    Article  CAS  Google Scholar 

  • Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J (2016) Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14(3):317–329

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S (2017) Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [cu (II) and Fe (III)], and humic acid. 3 Biotech 7(4):262

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16(1):211–237

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Singh J (2019a) Kinetic study of the biodegradation of glyphosate by indigenous soil bacterial isolates in presence of humic acid, Fe (III) and cu (II) ions. J Environ Chem Eng 7(3):103098

    Article  CAS  Google Scholar 

  • Singh S, Kumar V, Sidhu GK, Datta S, Dhanjal DS, Koul B, Janeja HS, Singh J (2019b) Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatal Agri Biotech 17:665–671

    Article  Google Scholar 

  • Singh S, Kumar V, Singh S, Singh J (2019c) Influence of humic acid, iron and copper on microbial degradation of fungicide Carbendazim. Biocatal Agri Biotech 20:101196

    Article  Google Scholar 

  • Stein C, Caccamo M, Laird G, Leptin M (2007) Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol 8(11):R251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan C, Kim CH (2008) Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 25(4):341–350

    Article  CAS  PubMed  Google Scholar 

  • Torraca V, Mostowy S (2018) Zebrafish infection: from pathogenesis to cell biology. Trends Cell Biol 28(2):143–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trede NS, Langenau DM, Traver D, Look AT, Zon LI (2004) The use of zebrafish to understand immunity. Immunity 20(4):367–379

    Article  CAS  PubMed  Google Scholar 

  • Van der Vaart M, Korbee CJ, Lamers GE, Tengeler AC, Hosseini R, Haks MC, Ottenhoff TH, Spaink HP, Meijer AH (2014) The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense. Cell Host Microbe 15(6):753–767

    Article  CAS  PubMed  Google Scholar 

  • Varshney GK, Sood R, Burgess SM (2015) Understanding and editing the zebrafish genome. In: Advances in genetics, vol 92. Academic Press, San Diego, pp 1–52

    Google Scholar 

  • Vergunst AC, Meijer AH, Renshaw SA, O’Callaghan D (2010) Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Imm 78(4):1495–1508

    Article  CAS  Google Scholar 

  • Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N (2017) Salicylic acid to decrease plant stress. Environ Chem Lett 5(1):101–123

    Article  CAS  Google Scholar 

  • White RM, Sessa A, Burke C (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CT, Cambier CJ, Davis JM, Hall CJ, Crosier PS, Ramakrishnan L (2012) Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host Microbe 12(3):301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida N, Frickel EM, Mostowy S (2017) Macrophage–microbe interactions: lessons from the zebrafish model. Frontiers Immunol 8:1703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sisodia, B.S., Kumar, V., Singh, S., Singh, S., Datta, S., Singh, J. (2020). Zebra Fish Infection Model: From Pathogenesis to Therapeutics. In: Siddhardha, B., Dyavaiah, M., Syed, A. (eds) Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1695-5_22

Download citation

Publish with us

Policies and ethics