Skip to main content

Organic Contaminants in Industrial Wastewater: Prospects of Waste Management by Integrated Approaches

  • Chapter
  • First Online:
Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant

Abstract

The growing world population and industrial development have led to the generation of different new types of hazardous chemicals that can have detrimental impacts on the environment. Contamination of soil, air, and water is one of the major problems facing the industrialized world today. A major class of these chemicals is organic aromatic compounds such as phenolic substances, most of which are hazardous pollutants and highly toxic even at low concentrations. Industrial plants such as petroleum refineries and gas processing facilities are the main sources of phenolic compounds in wastewaters. Given the increased awareness in realizing sustainable development, the management of wastewater containing high concentrations of phenols represents major economic and environmental challenges to the oil and gas industry. With emphasis placed on green technology, biotechnology has proved to play a vital role in the development of an economical approach for the effective removal of many organic water pollutants. Most of the recent research in the area has been focusing on developing new types of reactor systems and effective biocatalysts for the biodegradation of major contaminants in industrial wastewater. This chapter highlights the different options for the treatment of industrial wastewater with more focus on integrated systems of combined biological and physiochemical processes for the treatment of industrial effluents in an ecologically favorable process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelwahab O, Amin NK, El-Ashtoukhy ESZ (2009) Electrochemical removal of phenol from oil refinery wastewater. J Hazard Mater. 163(2–3):711–716

    Article  CAS  Google Scholar 

  • Abu Bakar SNH, Abu Hasan H, Mohammad AW, Sheikh Abdullah SR, Haan TY, Ngteni R, et al (2018) A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. J Clean Prod [Internet] 171:1532–1545. Available from: https://doi.org/10.1016/j.jclepro.2017.10.100

  • Abu Hamed T, Bayraktar E, Mehmetoǧlu Ü, Mehmetoǧlu T (2004) The biodegradation of benzene, toluene and phenol in a two-phase system. Biochem Eng J 19(2):137–146

    Article  CAS  Google Scholar 

  • Ahmad ZU, Yao L, Wang J, Gang DD, Islam F, Lian Q, et al. (2019) Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow: characterizations, adsorption study and adsorption mechanism. Chem Eng J [Internet] 359(September 2018):814–826. Available from: https://doi.org/10.1016/j.cej.2018.11.174

  • Ahn DH, Chang WS, Yoon T II (1999) Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process Biochem 34(5):429–439

    Article  CAS  Google Scholar 

  • Al-Ghouti MA, Al-Kaabi MA, Ashfaq MY, Da’na DA (2018) Produced water characteristics, treatment and reuse: a review. J Water Process Eng [Internet] 28(September 2018):222–239. Available from: https://doi.org/10.1016/j.jwpe.2019.02.001

  • Alias NH, Jaafar J, Samitsu S, Matsuura T, Ismail AF, Othman MHD, et al (2019) Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chem Eng J [Internet] 360(October 2018):1437–1446. Available from: https://doi.org/10.1016/j.cej.2018.10.217

  • Alizadeh M, Aminzadeh B, Taheri M, Farhadi S (2013) MBR excess sludge reduction by combination of electrocoagulation and Fenton oxidation processes. Sep Purif Technol [Internet] 120:378–385. Available from: https://doi.org/10.1016/j.seppur.2013.10.012

  • Al-Khalid T, El-Naas MH (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Environ Sci Technol 42(16):1631–1690

    Article  CAS  Google Scholar 

  • Al-Khalid T, El-Naas M (2018) Organic contaminants in refinery wastewater: characterization and novel approaches for biotreatment. In: Intechopen, pp 371–391

    Google Scholar 

  • Al-Obaidi MA, Kara-Zaïtri C, Mujtaba IM (2018a) Simulation and optimisation of a two-stage/two-pass reverse osmosis system for improved removal of chlorophenol from wastewater. J Water Process Eng [Internet] 22(February):131–137. Available from: https://doi.org/10.1016/j.jwpe.2018.01.012

  • Al-Obaidi MA, Kara-Zaïtri C, Mujtaba IM (2018b) Simulation and optimisation of a two-stage/two-pass reverse osmosis system for improved removal of chlorophenol from wastewater. J Water Process Eng [Internet] 22(November 2017):131–137. Available from: https://doi.org/10.1016/j.jwpe.2018.01.012

  • Al-Obaidi MA, Jarullah AT, Kara-Zaïtri C, Mujtaba IM (2018c) Simulation of hybrid trickle bed reactor–reverse osmosis process for the removal of phenol from wastewater. Comput Chem Eng [Internet] 113:264–273. Available from: https://doi.org/10.1016/j.compchemeng.2018.03.016

  • Alshabib M, Onaizi SA (2018) A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges. Sep Purif Technol [Internet] 219(October 2018):186–207. Available from: https://doi.org/10.1016/j.seppur.2019.03.028

  • Andreozzi R, Longo G, Majone M, Modesti G (1998) Integrated treatment of olive oil mill effluents (OME): study of ozonation coupled with anaerobic digestion. Water Res 32(8):2357–2364

    Article  CAS  Google Scholar 

  • Anis SF, Hashaikeh R, Hilal N (2019) Reverse osmosis pretreatment technologies and future trends: a comprehensive review. Desalination [Internet] 452(October 2018):159–195. Available from: https://doi.org/10.1016/j.desal.2018.11.006

  • Bahri M, Mahdavi A, Mirzaei A, Mansouri A, Haghighat F (2018) Integrated oxidation process and biological treatment for highly concentrated petrochemical effluents: a review. Chem Eng Process - Process Intensif [Internet] 125(August 2017):183–196. Available from: https://doi.org/10.1016/j.cep.2018.02.002

  • Bani-melhem K, Smith E (2012) Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chem Eng J [Internet] 198–199:201–210. Available from: https://doi.org/10.1016/j.cej.2012.05.065

  • Basak B, Jeon BH, Kurade MB, Saratale GD, Bhunia B, Chatterjee PK, et al (2019) Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor. Ecotoxicol Environ Saf [Internet] 180(May):317–325. Available from: https://doi.org/10.1016/j.ecoenv.2019.05.020

  • Bavandi R, Emtyazjoo M, Saravi HN, Yazdian F, Sheikhpour M (2019) Study of capability of nanostructured zero-valent iron and graphene oxide for bioremoval of trinitrophenol from wastewater in a bubble column bioreactor. Electron J Biotechnol [Internet] 39:8–14. Available from: https://doi.org/10.1016/j.ejbt.2019.02.003

  • Beccari M, Majone M, Riccardi C, Savarese F, Torrisi L (1999) Integrated treatment of olive oil mill effluents effect of chemical and physical pretreatment on anaerobic treatability. Water Sci Technol 40(1):347–355

    Article  CAS  Google Scholar 

  • Bel Hadjltaief H, Sdiri A, Ltaief W, Da Costa P, Gálvez ME, Ben Zina M (2018) Efficient removal of cadmium and 2-chlorophenol in aqueous systems by natural clay: adsorption and photo-Fenton degradation processes. Comptes Rendus Chim 21(3–4):253–262

    Article  CAS  Google Scholar 

  • Benitez FJ, Torregrosa J, Acero JL (1997) Improvement of the anaerobic biodegradation of olive mill wastewaters by prior ozonation pretreatment. Bioprocess Eng 17:169–175

    Article  CAS  Google Scholar 

  • Benitez FJ, Beltran-heredia J, Torregrosa J, Acero JL (1999) Treatment of olive mill wastewaters by ozonation, aerobic degradation and the combination of both treatments. J Chem Technol Biotechnol 646(February):639–646

    Article  Google Scholar 

  • Benitez FJ, Acero JL, Garcia J, Leal AI (2003) Purification of cork processing wastewaters by ozone, by activated sludge, and by their two sequential applications. Water Res 37:4081–4090

    Article  CAS  Google Scholar 

  • Bressan M, Liberatore L, D’Alessandro N, Tonucci L, Belli C, Ranalli G (2004) Improved combined chemical and biological treatments of olive oil mill wastewaters. J Agric Food Chem 52(5):1228–1233

    Article  CAS  Google Scholar 

  • Chung TP, Wu PC, Juang RS (2005) Use of microporous hollow fibers for improved biodegradation of high-strength phenol solutions. J Memb Sci 258(1–2):55–63

    Article  CAS  Google Scholar 

  • Cruickshank SM, Daugulis AJ, McLellan PJ (2000) Modelling of a continuous two-phase partitioning bioreactor for the degradation of xenobiotics. Process Biochem 35(9):1027–1035

    Article  CAS  Google Scholar 

  • De Gisi S, Galasso M, De Feo G (2009) Treatment of tannery wastewater through the combination of a conventional activated sludge process and reverse osmosis with a plane membrane. Desalination [Internet] 249(1):337–342. Available from: https://doi.org/10.1016/j.desal.2009.03.014

  • Demarche P, Junghanns C, Nair RR, Agathos SN (2012) Harnessing the power of enzymes for environmental stewardship. Biotechnol Adv [Internet] 30(5):933–953. Available from: https://doi.org/10.1016/j.biotechadv.2011.05.013

  • Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud P (2013) Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem [Internet] 48(10):1532–1552. Available from: https://doi.org/10.1016/j.procbio.2013.07.010

  • Deshpande AM, Satyanarayan S, Ramakant S (2010) Treatment of high-strength pharmaceutical wastewater by electrocoagulation combined with anaerobic process. Water Sci Technol 61(2):463–472

    Article  CAS  Google Scholar 

  • Di Bella G, Mannina G, Viviani G (2008) An integrated model for physical-biological wastewater organic removal in a submerged membrane bioreactor: model development and parameter estimation. J Memb Sci 322:1–12

    Article  CAS  Google Scholar 

  • Diya’Uddeen BH, Daud WMAW, Abdul Aziz AR (2011) Treatment technologies for petroleum refinery effluents: a review. Process Saf Environ Prot 89(2):95–105

    Article  CAS  Google Scholar 

  • El-Naas MH, Al-Zuhair S, Al-Lobaney A, Makhlouf S (2009) Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J Environ Manage [Internet] 91(1):180–185. Available from: https://doi.org/10.1016/j.jenvman.2009.08.003

  • El-Naas MH, Al-Zuhair S, Alhaija MA (2010a) Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chem Eng J [Internet] 162(3):997–1005. Available from: https://doi.org/10.1016/j.cej.2010.07.007

  • El-Naas MH, Al-Zuhair S, Makhlouf S (2010b) Continuous biodegradation of phenol in a spouted bed bioreactor (SBBR). Chem Eng J 160(2):565–570

    Article  CAS  Google Scholar 

  • El-Naas MH, Alhaija MA, Al-Zuhair S (2014a) Evaluation of a three-step process for the treatment of petroleum refinery wastewater. J Environ Chem Eng [Internet] 2(1):56–62. Available from: https://doi.org/10.1016/j.jece.2013.11.024

  • El-Naas MH, Surkatti R, Al-Zuhair S (2014b) Petroleum refinery wastewater treatment: A pilot scale study. J Water Process Eng [Internet] 14:71–76. Available from: https://doi.org/10.1016/j.jwpe.2016.10.005

  • Garcia-Segura S, Ocon JD, Chong MN (2018) Electrochemical oxidation remediation of real wastewater effluents — a review. Process Saf Environ Prot [Internet] 113:48–67. Available from: https://doi.org/10.1016/j.psep.2017.09.014

  • Gautam A, Rawat S, Verma L, Singh J, Sikarwar S, Yadav BC, et al (2018) Green synthesis of iron nanoparticle from extract of waste tea: An application for phenol red removal from aqueous solution. Environ Nanotechnology, Monit Manag [Internet] 10(August):377–387. Available from: https://doi.org/10.1016/j.enmm.2018.08.003

  • Ghobashy MM, Younis SA, Elhady MA, Serp P (2018) Radiation induced in-situ cationic polymerization of polystyrene organogel for selective absorption of cholorophenols from petrochemical wastewater. J Environ Manage [Internet] 210:307–315. Available from: https://doi.org/10.1016/j.jenvman.2018.01.018

  • Hassan H, Jin B, Donner E, Vasileiadis S, Saint C, Dai S(2018) Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: microbial consortia could make differences. Chem Eng J [Internet] 332(September 2017):647–657. Available from: https://doi.org/10.1016/j.cej.2017.09.114

  • Huang L, Sun Y, Liu Y, Wang N (2013) Mineralization of 4-chlorophenol and analysis of bacterial community in microbial fuel cells. Procedia Environ Sci [Internet] 18:534–539. Available from: https://doi.org/10.1016/j.proenv.2013.04.072

  • Javier Benitez F, Acero JL, Gonzalez T, Garcia J (2001) Organic matter removal from wastewaters of the black olive industry by chemical and biological procedures. Process Biochem 37(3):257–265

    Article  CAS  Google Scholar 

  • Jiménez S, Micó MM, Arnaldos M, Medina F, Contreras S (2018) State of the art of produced water treatment. Chemosphere 192:186–208

    Article  CAS  Google Scholar 

  • Jou CG, Huang G (2003) A pilot study for oil refinery wastewater treatment using a fixed-film bioreactor. Adv Environ Res 7:463–469

    Article  CAS  Google Scholar 

  • Juang RS, Wu CY (2007) Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors. Chemosphere 66(1):191–198

    Article  CAS  Google Scholar 

  • Jun LY, Yon LS, Mubarak NM, Bing CH, Pan S, Danquah MK, et al (2019) An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. J Environ Chem Eng [Internet] 7(2):102961. Available from: https://doi.org/10.1016/j.jece.2019.102961

  • Kargi F, Eker S (2005) Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochem 40(6):2105–2111

    Article  CAS  Google Scholar 

  • Kargi F, Eker S (2006) Effect of sludge age on performance of an activated sludge unit treating 2,4 dichlorophenol-containing synthetic wastewater. Enzyme Microb Technol 38(1–2):60–64

    Article  CAS  Google Scholar 

  • Khan MZ, Mondal PK, Sabir S (2013) Aerobic granulation for wastewater bioremediation: a review. Can J Chem Eng 91(6):1045–1058

    Article  CAS  Google Scholar 

  • Kim S, Park C, Kim T-H, Lee J, Kim S-W (2003) COD reduction and decolorization of textile effluent using a combined process. J Biosci Bioeng. 95(1):102–105

    Article  CAS  Google Scholar 

  • Kong F, Wang A, Ren HY, Huang L, Xu M, Tao H (2014) Improved dechlorination and mineralization of 4-chlorophenol in a sequential biocathode-bioanode bioelectrochemical system with mixed photosynthetic bacteria. Bioresour Technol [Internet] 158:32–38. Available from: https://doi.org/10.1016/j.biortech.2014.01.142

  • Kotsou M, Kyriacou A, Lasaridi K, Pilidis G (2004) Integrated aerobic biological treatment and chemical oxidation with Fenton’ s reagent for the processing of green table olive wastewater. Semantic Scholar 39:1653–1660

    CAS  Google Scholar 

  • L’Amour L, Bessa E, Gomes S, Leite F (2008) Removal of phenol in high salinity media by a hybrid process (activated sludge + photocatalysis). Semantic Scholar 60:142–146

    Google Scholar 

  • Laera G, Cassano D, Lopez A, Pinto A, Pollice A, Ricco G et al (2012) Removal of organics and degradation products from industrial wastewater by a membrane bioreactor integrated with ozone or UV/H 2O 2 treatment. Environ Sci Technol 46(2):1010–1018

    Article  CAS  Google Scholar 

  • Lafi WK, Shannak B, Al-shannag M, Al-anber Z, Al-hasan M (2009) Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. 70:141–146

    Google Scholar 

  • Lai P, Zhao H, Zeng M, Ni J (2009) Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process. Semantic Scholar 162:1423–1429

    CAS  Google Scholar 

  • Li B, Sun Y, Li Y (2005) Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR). J Zhejiang Univ Sci B [Internet]. 6(11):1115–1123. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1390660&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  • Liao Y, Goh S, Tian M, Wang R, Fane AG (2018) Design, development and evaluation of nanofibrous composite membranes with opposing membrane wetting properties for extractive membrane bioreactors. J Memb Sci [Internet] 551(December 2017):55–65. Available from: https://doi.org/10.1016/j.memsci.2018.01.029

  • Lin C, Tsai T, Liu J, Chen M (2001) Enhanced biodegradation of petrochemical wastewater using ozonation and bac advanced treatment system. Water Res 35(3):699–704

    Article  CAS  Google Scholar 

  • Liu X, Wu S, Zhang D, Shen J, Han W, Sun X, et al (2018a) Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system. J Environ Sci (China) [Internet] 67:318–329. Available from: https://doi.org/10.1016/j.jes.2017.09.016

  • Liu SH, Chang CM, Lin CW (2018b) Modifying proton exchange membrane in a microbial fuel cell by adding clay mineral to improve electricity generation without reducing removal of toluene. Biochem Eng J [Internet] 134:101–107. Available from: https://doi.org/10.1016/j.bej.2018.03.013

  • Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147(2–3):259–264

    Article  CAS  Google Scholar 

  • Ma X, Li N, Jiang J, Xu Q, Li H, Wang L, Lu J (2013) Adsorption–synergic biodegradation of high-concentrated phenolic water by Pseudomonas putida immobilized on activated carbon fiber. J Environ Chem Eng 1(3):466–472

    Article  CAS  Google Scholar 

  • Mahdavianpour M, Moussavi G, Farrokhi M (2018) Biodegradation and COD removal of p-Cresol in a denitrification baffled reactor: performance evaluation and microbial community. Process Biochem 69:153–160

    Article  CAS  Google Scholar 

  • Malato S, Maldonado MI, Oller I, Gernjak W, Leonidas P (2007) Coupling solar photo-Fenton and biotreatment at industrial scale: main results of a demonstration plant. J Hazard Mater 146:440–446

    Article  CAS  Google Scholar 

  • Marco A, Esplugas S, Saum G (1997) How and why combine biological and chemical treatment. Water Sci Technol 35(4):321–327

    Article  CAS  Google Scholar 

  • Maria S, Guelli DA, De SU, Angela K, Bonilla S, Augusto A et al (2010) Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J Hazard Mater 179:35–42

    Article  CAS  Google Scholar 

  • Maria A, Fratino U, Bergna G, Di C (2018) Integrated biological and ozone treatment of printing textile wastewater. Chem Eng J [Internet] 195–196:261–269. Available from: https://doi.org/10.1016/j.cej.2012.05.006

  • Marrot B, Barrios-Martinez A, Moulin P, Roche N (2006) Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochem Eng J 30(2):174–183

    Article  CAS  Google Scholar 

  • Martín J, Orta M del M, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2018) Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas. Environ Res [Internet] 164(March):488–494. Available from: https://doi.org/10.1016/j.envres.2018.03.037

  • Mudliar SN, Padoley KV, Bhatt P, Sureshkumar M, Lokhande SK, Pandey RA et al (2008) Pyridine biodegradation in a novel rotating rope bioreactor. Bioresour Technol 99(5):1044–1051

    Article  CAS  Google Scholar 

  • Mustafa A, Azim MK, Raza Z, Kori JA (2018) BTEX removal in a modified free water surface wetland. Chem Eng J [Internet] 333(September 2017):451–455. Available from: https://doi.org/10.1016/j.cej.2017.09.168

  • Nancharaiah Y V., Kiran Kumar Reddy G (2018) Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications. Bioresour Technol [Internet] 247 (September 2017):1128–1143. Available from: https://doi.org/10.1016/j.biortech.2017.09.131

  • Nawaz MS, Ahsan M (2014) Comparison of physico-chemical, advanced oxidation and biological techniques for the textile wastewater treatment. Alexandria Eng J [Internet] 53(3):717–722. Available from: https://doi.org/10.1016/j.aej.2014.06.007

  • Nogueira V, Lopes I, Freitas AC, Rocha-Santos TAP, Gonçalves F, Duarte AC, et al (2015) Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials. Ecotoxicol Environ Saf [Internet] 115:234–242. Available from: https://doi.org/10.1016/j.ecoenv.2015.02.028

  • Noorimotlagh Z, Mirzaee SA, Martinez SS, Alavi S, Ahmadi M, Jaafarzadeh N (2019) Adsorption of textile dye in activated carbons prepared from DVD and CD wastes modified with multi-wall carbon nanotubes: Equilibrium isotherms, kinetics and thermodynamic study. Chem Eng Res Des [Internet] 141:290–301. Available from: https://doi.org/10.1016/j.cherd.2018.11.007

  • Nzila A (2018) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: overview of studies, proposed pathways and future perspectives. Environ Pollut [Internet] 239:788–802. Available from: https://doi.org/10.1016/j.envpol.2018.04.074

  • Ochando-Pulido JM, González-Hernández R, Martinez-Ferez A (2018) On the effect of the operating parameters for two-phase olive-oil washing wastewater combined phenolic compounds recovery and reclamation by novel ion exchange resins. Sep Purif Technol [Internet] 195(December 2017):50–59. Available from: https://doi.org/10.1016/j.seppur.2017.11.075

  • Pérez LS, Rodriguez OM, Reyna S, Sánchez-Salas JL, Lozada JD, Quiroz MA et al (2016) Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes. Phys Chem Earth 91:53–60

    Article  Google Scholar 

  • Pi Y, Li X, Xia Q, Wu J, Li Y, Xiao J, et al (2018) Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem Eng J [Internet] 337(December 2017):351–371. Available from: https://doi.org/10.1016/j.cej.2017.12.092

  • Prabakar D, Suvetha K S, Manimudi VT, Mathimani T, Kumar G, Rene ER, et al (2018) Pretreatment technologies for industrial effluents: critical review on bioenergy production and environmental concerns. J Environ Manage [Internet] 218:165–180. Available from: https://doi.org/10.1016/j.jenvman.2018.03.136

  • Prakash R, Majumder SK, Singh A (2018) Flotation technique: its mechanisms and design parameters. Chem Eng Process Process Intensif 127(March):249–270

    Article  CAS  Google Scholar 

  • Quan X, Shi H, Zhang Y, Wang J, Qian Y (2004) Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp. Sep Purif Technol 34(1–3):97–103

    Article  CAS  Google Scholar 

  • Radwan M, Gar Alalm M, El-Etriby HK (2019) Application of electro-Fenton process for treatment of water contaminated with benzene, toluene, and p-xylene (BTX) using affordable electrodes. J Water Process Eng [Internet] 31(January):100837. Available from: https://doi.org/10.1016/j.jwpe.2019.100837

  • Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113(1–3):123–129

    Article  CAS  Google Scholar 

  • Rana S, Gupta N, Rana RS (2018) Removal of organic pollutant with the use of rotating biological contactor. Mater Today Proc [Internet] 5(2):4218–4224. Available from: https://doi.org/10.1016/j.matpr.2017.11.685

  • Rasalingam S, Peng R, Koodali RT (2014) Removal of hazardous pollutants from wastewaters: applications of TiO 2 -SiO 2 mixed oxide materials. J Nanomater 2014(January):1–42

    Article  CAS  Google Scholar 

  • Reungoat J, Escher BI, Macova M, Argaud FX, Gernjak W, Keller J (2012) Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Res [Internet] 46(3):863–872. Available from: https://doi.org/10.1016/j.watres.2011.11.064

  • Ruan B, Wu P, Chen M, Lai X, Chen L, Yu L, et al (2018) Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol–alginate–kaolin beads for efficient degradation of phenol against unfavorable environmental factors. Ecotoxicol Environ Saf [Internet] 162(June):103–111. Available from: https://doi.org/10.1016/j.ecoenv.2018.06.058

  • Sadhukhan J, Martinez-Hernandez E, Murphy RJ, Ng DKS, Hassim MH, Siew Ng K et al (2018) Role of bioenergy, biorefinery and bioeconomy in sustainable development: strategic pathways for Malaysia. Renew Sustain Energy Rev 81(April 2017):1966–1987

    Article  CAS  Google Scholar 

  • Sahinkaya E, Uzal N, Yetis U, Dilek FB (2008) Biological treatment and nanofiltration of denim textile wastewater for reuse. J Hazard Mater 153:1142–1148

    Article  CAS  Google Scholar 

  • Samaei SM, Gato-Trinidad S, Altaee A (2018) The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – a review. Sep Purif Technol [Internet] 200(February):198–220. Available from: https://doi.org/10.1016/j.seppur.2018.02.041

  • Santos CE, Fonseca A, Kumar E, Bhatnagar A, Vilar VJP, Botelho CMS, et al (2015) Performance evaluation of the main units of a re fi nery wastewater treatment plant – a case study. Biochem Pharmacol [Internet] 3(3):2095–2103. Available from: https://doi.org/10.1016/j.jece.2015.07.011

  • Schaar H, Clara M, Gans O, Kreuzinger N (2010) Micropollutant removal during biological wastewater treatment and a subsequent ozonation step. Environ Pollut [Internet] 158(5):1399–1404. Available from: https://doi.org/10.1016/j.envpol.2009.12.038

  • Shetty KV, Kalifathulla I, Srinikethan G (2007) Performance of pulsed plate bioreactor for biodegradation of phenol. J Hazard Mater 140(1–2):346–352

    Article  CAS  Google Scholar 

  • Shetty KV, Verma DK, Srinikethan G (2011) Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans. Bioprocess Biosyst Eng. 34(1):45–56

    Article  CAS  Google Scholar 

  • Shiying Y, Ping W, Xin Y, Guang W, Wenyi Z, Liang S (2009) A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. J Environ Sci 21:1175–1180

    Article  CAS  Google Scholar 

  • Singh P, Borthakur A (2018) A review on biodegradation and photocatalytic degradation of organic pollutants: a bibliometric and comparative analysis. J Clean Prod [Internet] 196:1669–1680. Available from: https://doi.org/10.1016/j.jclepro.2018.05.289

  • Sirtori C, Zapata A, Oller I, Gernjak W, Agüera A, Malato S (2009) Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res 43(3):661–668

    Article  CAS  Google Scholar 

  • Sivagami K, Anand D, Divyapriya G, Nambi I (2019) Treatment of petroleum oil spill sludge using the combined ultrasound and Fenton oxidation process. Ultrason Sonochem [Internet] 51(September 2018):340–349. Available from: https://doi.org/10.1016/j.ultsonch.2018.09.007

  • Sonune A, Ghate R (2004) DESALINATION Developments in wastewater treatment methods. Desalination [Internet] 167(167):55–63. Available from: www.elsevier.com/locate/desal

    Article  CAS  Google Scholar 

  • Srikanth S, Kumar M, Puri SK (2018) Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry. Bioresour Technol [Internet] 265(December 2017):506–518. Available from: https://doi.org/10.1016/j.biortech.2018.02.059

  • Sun M, Wei Q, Shao Y, Du B, Yan T, Yan L, et al (2018) Engineering composition-tunable 3D hierarchical bismuth oxyiodides heterojunctions: Ionic liquid-assisted fabrication with strong adsorption ability and enhanced photocatalytic properties. Appl Catal B Environ [Internet] 233(March):250–259. Available from: https://doi.org/10.1016/j.apcatb.2018.04.010

  • Surkatti R, Al-Zuhair S (2018) Effect of cresols treatment by microalgae on the cells’ composition. J Water Process Eng [Internet] 26(October):250–256. Available from: https://doi.org/10.1016/j.jwpe.2018.10.022

  • Surkatti R, El-Naas MH (2014) Biological treatment of wastewater contaminated with p-cresol using Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Water Process Eng [Internet] 1:84–90. Available from: https://doi.org/10.1016/j.jwpe.2014.03.008

  • Sutton PM, Mishra PN, Crawford PM (1994) Combining biological and physical processes for complete treatment of oily wastewaters. Int Biodeterior Biodegrad 33(1):3–21

    Article  CAS  Google Scholar 

  • Tekin H, Bilkay O, Ataberk SS, Balta TH, Ceribasi IH, Sanin FD et al (2006) Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Semantic Scholar 136:258–265

    CAS  Google Scholar 

  • Turan-Ertas T (2001) Biological and physical-chemical treatment of textile dyeing wastewater for color and COD removal. J Environ 23(3):199–206

    CAS  Google Scholar 

  • Urbaniec K, Mikulčić H, Wang Y, Duić N (2018) System integration is a necessity for sustainable development. J Clean Prod 195:122–132

    Article  Google Scholar 

  • Vinduja V, Balasubramanian N (2013) Electrocoagulation-integrated hybrid membrane processes for the treatment of tannery wastewater. Environ Sci Pollut Res 20:7441–7449

    Article  CAS  Google Scholar 

  • Wang D, Hu Q Yuan, Li M, Wang C, Ji M (2016) Evaluating the removal of organic fraction of commingled chemical industrial wastewater by activated sludge process augmented with powdered activated carbon. Arab J Chem [Internet] 9:S1951–S1961. Available from: https://doi.org/10.1016/j.arabjc.2015.08.031

  • Wang Y, O’Connor D, Shen Z, Lo IMC, Tsang DCW, Pehkonen S, et al (2019) Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. J Clean Prod [Internet] 226:540–549. Available from: https://doi.org/10.1016/j.jclepro.2019.04.128

  • Yan L, Wang Y, Li J, Ma H, Liu H, Li T et al (2014) Comparative study of different electrochemical methods for petroleum refinery wastewater treatment. Desalination 341(1):87–93

    Article  CAS  Google Scholar 

  • Yavuz Y, Koparal AS, Öǧütveren ÜB (2010) Treatment of petroleum refinery wastewater by electrochemical methods. Desalination 258(1–3):201–205

    Article  CAS  Google Scholar 

  • Zhang Z, Zhu Z, Shen B, Liu L (2019) Insights into biochar and hydrochar production and applications: A review. Energy [Internet] 171:581–598. Available from: https://doi.org/10.1016/j.energy.2019.01.035

  • Zhao G, Zhou L, Li Y, Liu X, Ren X, Liu X (2009) Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor. J Hazard Mater 169(1–3):402–410

    Article  CAS  Google Scholar 

  • Zhao W, Sui Q, Huang X (2018) Removal and fate of polycyclic aromatic hydrocarbons in a hybrid anaerobic–anoxic–oxic process for highly toxic coke wastewater treatment. Sci Total Environ [Internet] 635(1239):716–724. Available from: https://doi.org/10.1016/j.scitotenv.2018.04.162

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muftah H. El-Naas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Khalid, T., Surkatti, R., El-Naas, M.H. (2020). Organic Contaminants in Industrial Wastewater: Prospects of Waste Management by Integrated Approaches. In: Shah, M., Banerjee, A. (eds) Combined Application of Physico-Chemical & Microbiological Processes for Industrial Effluent Treatment Plant. Springer, Singapore. https://doi.org/10.1007/978-981-15-0497-6_10

Download citation

Publish with us

Policies and ethics