Skip to main content
Log in

Microbial Biotransformation and Biomineralization of Organic-Rich Waste

  • Biology and Pollution (R Boopathy and Y Hong, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Improper discharge of industrial effluents would lead to direct contamination of our water, air, and soil systems. Without proper treatment, both these inorganic and organic-matter-containing waste would pose harmful effects towards aquatic organisms, overall water quality, reduction in soil health, and increase in greenhouse gasses from anaerobic microbial degradation activities.

Recent Findings

Current treatment technologies involve the use of combined chemical, biological, and physical approaches, which has been proven very effective. Another useful alternative is to utilize the high organic content present in the waste as substrate for the metabolism of microbes as catalyst in industrial processes including water treatment as well as production of useful microbial secondary metabolites such as pigments.

Summary

This review highlights some example for the microbial biotransformation and biomineralization of organic-rich industrial discharges. This is important based on its potential to be applied as useful alternative techniques to dispose huge volumes of industrial waste as well as reducing high cost of sustaining biological-based industrial processes that would require substantial investment notably for the microbial growth medium. Nevertheless, clear insight into the engineering aspects of such processes and sufficient knowledge on its feasibility to function properly at pilot-scale level are of paramount importance prior to any commercialization attempts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Vasiljevic T. Pineapple. In: Galanakis CM, editor. Valorization of fruit processing by-products. Press: Academic; 2020. p. 203–25. https://doi.org/10.1016/B978-0-12-817106-6.00010-1.

    Chapter  Google Scholar 

  2. Rabiu Z, Maigari FU, Lawan U, Mukhtar ZG. Pineapple waste utilization as a sustainable means of waste management. In: Zakaria Z, editor. Sustainable technologies for the management of agricultural wastes. Singapore: Springer; 2018. p. 143–54. https://doi.org/10.1007/978-981-10-5062-6_11.

    Chapter  Google Scholar 

  3. FAOSTAT. Crops and livestock products. 2021. http://www.fao.org/faostat/en/#data/QCL. Accessed 1 Aug 2020.

  4. Sukruansuwan V, Napathorn SC. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol Biofuels. 2018;11:202. https://doi.org/10.1186/s13068-018-1207-8.

    Article  CAS  Google Scholar 

  5. Baidhe E, Kigozi J, Mukisa I, Muyanja C, Namubiru L, Kitarikawe B. Unearthing the potential of solid waste generated along the pineapple drying process line in Uganda: a review. Environ Challenges. 2021;2: 100012. https://doi.org/10.1016/j.envc.2020.100012.

    Article  Google Scholar 

  6. Ravindran R, Jaiswal AK. Exploitation of food industry waste for high-value products. Trends Biotechnol. 2016;34(1):58–69. https://doi.org/10.1016/j.tibtech.2015.10.008.

    Article  CAS  Google Scholar 

  7. Leyva-Díaz JC, Monteoliva-García A, Martín-Pascual J, Munio MM, García-Mesa JJ, Poyatos JM. Moving bed biofilm reactor as an alternative wastewater treatment process for nutrient removal and recovery in the circular economy model. Bioresour Technol. 2020;299: 122631. https://doi.org/10.1016/j.biortech.2019.122631.

    Article  CAS  Google Scholar 

  8. Waqas S, Bilad MR, Man Z, et al. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: a review. J Environ Manag. 2020;268: 110718. https://doi.org/10.1016/j.jenvman.2020.110718.

    Article  CAS  Google Scholar 

  9. Esfahani EB, Zeidabadi FA, Bazargan A, McKay G. The modified Bardenpho process. In: Hussain C, editor. Handbook of environmental materials management. Cham: Springer; 2019. https://doi.org/10.1007/978-3-319-58538-3_87-2.

    Chapter  Google Scholar 

  10. Bahiru DB. Accumulation of toxic and trace metals in agricultural soil: a review of source and chemistry in Ethiopia. Int J Environ Chem. 2021;5(2):17–22. https://doi.org/10.11648/j.ijec.20210502.11.

    Article  Google Scholar 

  11. Zubairi NA, Takaijudin H, Yusof KW. A review on the mechanism removal of pesticides and heavy metal from agricultural runoff in treatment train. Int J Environ Ecol Eng. 2021;15(2):75–86.

    Google Scholar 

  12. Pandya IY. Pesticides and their applications in agriculture. Asian J Appl Sc Technol. 2018;2(2):894–900.

    Google Scholar 

  13. Jayaraj R, Megha P, Sreedev P. Organochlorine pesticides their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol. 2016;9(3–4):90–100. https://doi.org/10.1515/intox-2016-0012.

    Article  CAS  Google Scholar 

  14. Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB. Pesticide toxicity: a mechanistic approach. EXCLI J. 2018;17:1101–36. https://doi.org/10.17179/excli2018-1710.

    Article  Google Scholar 

  15. Zaidon SZ, Ho YB, Hashim Z, Saari N, Praveena SM. Pesticides contamination and analytical methods of determination in environmental matrices in Malaysia and their potential human health effects-a review. Mal J Med Health Sci. 2018;14(SP1):81–8.

    Google Scholar 

  16. Xu D, Liu T, Lin L, Li S, Hang X, Sun Y. Exposure to endosulfan increases endothelial permeability by transcellular and paracellular pathways in relation to cardiovascular diseases. Environ Pollut. 2017;223:111–9. https://doi.org/10.1016/j.envpol.2016.12.051.

    Article  CAS  Google Scholar 

  17. Bolor VK, Boadi NO, Borquaye LS, Afful S. Human risk assessment of organochlorine pesticide residues in vegetables from Kumasi Ghana. J Chem. 2018;2018:3269065. https://doi.org/10.1155/2018/3269065.

    Article  CAS  Google Scholar 

  18. Terzopoulou E, Voutsa D. Study of persistent toxic pollutants in a river basin-ecotoxicological risk assessment. Ecotoxicology. 2017;26(5):625–38. https://doi.org/10.1007/s10646-017-1795-2.

    Article  CAS  Google Scholar 

  19. Rossi M, Scarselli M, Fasciani I, Maggio R, Giorgi F. Dichlorodiphenyltrichloroethane (DDT) induced extracellular vesicle formation: a potential role in organochlorine increased risk of Parkinson’s disease. Acta Neurobiol Exp (Wars). 2017;77(2):113–7. https://doi.org/10.21307/ane-2017-043.

    Article  Google Scholar 

  20. Wallace DR, Buha DA. Heavy metal and pesticide exposure: a mixture of potential toxicity and carcinogenicity. Curr Opin Toxicol. 2020;19:72–9. https://doi.org/10.1016/j.cotox.2020.01.001.

    Article  Google Scholar 

  21. Koutros S, Harris SA, Spinelli JJ, Blair A, McLaughlin JR, Zahm SH, Kim S, Albert PS, Kachuri L, Pahwa M, Cantor KP, Weisenburger DD, Pahwa P, Pardo LA, Dosman JA, Demers PA, Beane Freeman LE. Non-Hodgkin lymphoma risk and organophosphate and carbamate insecticide use in the north American pooled project. Environ Int. 2019;127:199–205. https://doi.org/10.1016/j.envint.2019.03.018.

    Article  CAS  Google Scholar 

  22. Yu X, Yin H, Peng H, Lu G, Liu Z, Dang Z. OPFRs and BFRs induced A549 cell apoptosis by caspase-dependent mitochondrial pathway. Chemosphere. 2019;221:693–702. https://doi.org/10.1016/j.chemosphere.2019.01.074.

    Article  CAS  Google Scholar 

  23. Sharma N, Garg D, Deb R, Samtani R. Toxicological profile of organochlorines aldrin and dieldrin: an Indian perspective. Rev Environ Health. 2017;32(4):361–72. https://doi.org/10.1515/reveh-2017-0013.

    Article  CAS  Google Scholar 

  24. Sarty KI, Cowie A, Martyniuk CJ. The legacy pesticide dieldrin acts as a teratogen and alters the expression of dopamine transporter and dopamine receptor 2a in zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol. 2017;194:37–47. https://doi.org/10.1016/j.cbpc.2017.01.010.

    Article  CAS  Google Scholar 

  25. Bonner MR, Freeman LE, Hoppin JA, Koutros S, Sandler DP, Lynch CF, Hines CJ, Thomas K, Blair A, Alavanja MC. Occupational exposure to pesticides and the incidence of lung cancer in the agricultural health study. Environ Health Perspect. 2017;125(4):544–51. https://doi.org/10.1289/EHP456.

    Article  Google Scholar 

  26. Eldakroory SA, Morsi DE, Abdel-Rahman RH, Roshdy S, Gouida MS, Khashaba EO. Correlation between toxic organochlorine pesticides and breast cancer. Hum Exp Toxicol. 2017;36(12):1326–34. https://doi.org/10.1177/0960327116685887.

    Article  CAS  Google Scholar 

  27. Zeng H, Fu X, Liang Y, Qin L, Mo L. Risk assessment of an organochlorine pesticide mixture in the surface waters of Qingshitan Reservoir in Southwest China. RSC Adv. 2018;8(32):17797–805. https://doi.org/10.1039/C8RA01881B.

    Article  CAS  Google Scholar 

  28. Oyekunle JAO, Adegunwa AO. Distribution source apportionment and health risk assessment of organochlorine pesticides in drinking groundwater. 2021. https://doi.org/10.21203/rs.3.rs-152579/v1.

    Article  Google Scholar 

  29. Dhouib I, Jallouli M, Annabi A, Marzouki S, Gharbi N, Elfazaa S, Lasram MM. From immunotoxicity to carcinogenicity: the effects of carbamate pesticides on the immune system. Environ Sci Pollut Res Int. 2016;23(10):9448–58. https://doi.org/10.1007/s11356-016-6418-6.

    Article  CAS  Google Scholar 

  30. El-Nabarawy N, Gouda A, Shalaby E. Therapeutic intervention of curcumin on interleukin-6 and oxidative stress induced by paraquat toxicity of lung and liver in rats. Biomed Pharmacol J. 2019;12(4):1737–48. https://doi.org/10.13005/bpj/1803.

    Article  CAS  Google Scholar 

  31. Huang J, Ning N, Zhang W. Effects of paraquat on IL-6 and TNF-α in macrophages. Exp Ther Med. 2019;17(3):1783–9. https://doi.org/10.3892/etm.2018.7099.

    Article  CAS  Google Scholar 

  32. Ai P, Jin K, Alengebawy A, Elsayed M, Meng L, Chen M, Ran Y. Effect of application of different biogas fertilizer on eggplant production: analysis of fertilizer value and risk assessment. Environ Technol Innov. 2020;19: 101019. https://doi.org/10.1016/j.eti.2020.101019.

    Article  Google Scholar 

  33. • Zhen H, Jia L, Huang C, Qiao Y, Li J, Li H, Chen Q, Wan Y. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ Pollut. 2020;263:114552. https://doi.org/10.1016/j.envpol.2020.114552. This paper focused on the significant impact from continuous application of manure as fertilizer towards heavy metal contents in agricultural area.

    Article  CAS  Google Scholar 

  34. Kumar S, Sharma A. Cadmium toxicity: effects on human reproduction and fertility. Rev Environ Health. 2019;34(4):327–38. https://doi.org/10.1515/reveh-2019-0016.

    Article  CAS  Google Scholar 

  35. Ghizal F, Ammar MR, Najah H, Nitu N, Abbas AM. Cadmium in human diseases: it’s more than just a mere metal. Indian J Clin Biochem. 2019;34(4):371–8. https://doi.org/10.1007/S12291-019-00839-8.

    Article  Google Scholar 

  36. Chunhabundit R. Cadmium exposure and potential health risk from foods in contaminated area Thailand. Toxicol Res. 2016;32(1):65–72. https://doi.org/10.5487/tr.2016.32.1.065.

    Article  CAS  Google Scholar 

  37. • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang M-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 2021;9(3):42. https://doi.org/10.3390/toxics9030042. This manuscript provides deep insights into the understanding of environmental toxicants and their hazardous effects.

  38. Pap S, Šolević Knudsen T, Radonić J, Maletić S, Igić SM, Turk SM. Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. J Clean Prod. 2017;162:958–72. https://doi.org/10.1016/j.jclepro.2017.06.083.

    Article  CAS  Google Scholar 

  39. Mancini G, Papirio S, Lens PNL, Esposito G. Increased biogas production from wheat straw by chemical pretreatments. Renew Energy. 2018;119:608–14. https://doi.org/10.1016/j.renene.2017.12.045.

    Article  CAS  Google Scholar 

  40. Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen S. Strategies for improvement of biohydrogen production from organic-rich waste: a review. Biomass Bioenergy. 2015;75:101–18. https://doi.org/10.1016/j.biombioe.2015.02.011.

    Article  CAS  Google Scholar 

  41. Karimi S, Mahboobi Soofiani N, Mahboubi A, Taherzadeh MJ. Use of organic wastes and industrial by-products to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability. 2018;10(9):3296. https://doi.org/10.3390/su10093296.

    Article  CAS  Google Scholar 

  42. Subha C, Kavitha S, Abisheka S, Tamilarasan K, Arulazhagan P, Rajesh BJ. Bioelectricity generation and effect studies from organic rich chocolaterie wastewater using continuous upflow anaerobic microbial fuel cell. Fuel. 2019;251:224–32. https://doi.org/10.1016/j.fuel.2019.04.052.

    Article  CAS  Google Scholar 

  43. Zhou W, Min M, Li Y, Hu B, Ma X, Cheng Y, Liu Y, Chen P, Ruan R. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol. 2012;110:448–55. https://doi.org/10.1016/j.biortech.2012.01.063.

    Article  CAS  Google Scholar 

  44. Vincevica-Gaile Z, Stankevica K, Irtiseva K, Shishkin A, Obuka V, Celma S, Klavins M. Granulation of fly ash and biochar with organic lake sediments – a way to sustainable utilization of waste from bioenergy production. Biomass Bioenerg. 2019;125:23–33. https://doi.org/10.1016/j.biombioe.2019.04.004.

    Article  CAS  Google Scholar 

  45. Singh P, Itankar N, Patil Y. Biomanagement of hexavalent chromium: current trends and promising perspectives. J Environ Manag. 2021;279: 111547. https://doi.org/10.1016/j.jenvman.2020.111547.

    Article  CAS  Google Scholar 

  46. Ahmad WA, Zakaria ZA, Khasim AR, Alias MA, Ismail SM. Pilot-scale removal of chromium from industrial wastewater using the ChromeBac system. Bioresour Technol. 2010;101(12):4371–8. https://doi.org/10.1016/j.biortech.2010.01.106.

    Article  CAS  Google Scholar 

  47. Ishak AF, Karim NA, Ahmad WA, Zakaria ZA. Chromate detoxification using combination of ChromeBacTM system and immobilized chromate reductase beads. Int Biodeterior Biodegradation. 2016;113:238–43. https://doi.org/10.1016/j.ibiod.2016.03.020.

    Article  CAS  Google Scholar 

  48. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater. 2007;146(1–2):30–8. https://doi.org/10.1016/j.jhazmat.2006.11.052.

    Article  CAS  Google Scholar 

  49. Roda A, Lambri M. Food uses of pineapple waste and by-products: a review. Int J Food Sci Technol. 2019;54(4):1009–17. https://doi.org/10.1111/ijfs.14128.

    Article  CAS  Google Scholar 

  50. Rosli NHM, Ahmad WA. Single cultures of Acinetobacter sp. and Cellulosimicrobium sp. grown in pineapple waste: adaption study and potential in reducing cod from real textile wastewater. Sci Lett. 2018;12(1):1–14.

  51. Nduka FO, Ubani SC, Okpashi VE, Nwankwo NE, Gometi SA, Nwaso BC, Nwodo OFC. Utilization of banana pineapple and watermelon wastes substrate: as consortiums to remediating cyanide polluted soil. Am J Environ Sci. 2018;14(2):77–85. https://doi.org/10.3844/ajessp.2018.77.85.

    Article  CAS  Google Scholar 

  52. Dacera DDM, Babel S, Parkpian P. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes. J Hazard Mater. 2009;167(1–3):866–72. https://doi.org/10.1016/j.jhazmat.2009.01.064.

    Article  CAS  Google Scholar 

  53. • Aruldass CA, Rubiyatno, Venil CK, Ahmad WA. Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Adv. 2015;5(64):51524–36. https://doi.org/10.1039/C5RA05765E. This paper reports on the pioneering work on the evaluation of bioactivity of violet pigment from locally isolated bacteria grown in agricultural waste as growth medium.

  54. Venil CK, Yusof NZ, Aruldass CA, Ahmad WA. Application of violet pigment from Chromobacterium violaceum UTM5 in textile dyeing. Biologia (Poland). 2016;71(2):121–7.

    Article  CAS  Google Scholar 

  55. Wiley JM, Sherwood LM, Woolverton CJ. Microbial growth Prescott Harley and Klein’s microbiology. 7th ed. New York: McGraw Hill; 2008. p. 122–3.

    Google Scholar 

  56. Yatim HM, Aruldass CA, Hamzah MAAM, Ahmad WA, Setu SA. Synthesis and optimization of nano-sized bacterial-based violacein pigment using response surface methodology. Mal J Fund Appl Sci. 2019;15(6):818–24. https://doi.org/10.11113/mjfas.v15n6.1271.

    Article  Google Scholar 

  57. Aruldass CA, Aziz A, Venil CK, Khasim AR, Ahmad WA. Utilization of agro-industrial waste for the production of yellowish-orange pigment from Chryseobacterium artocarpi CECT 8497. Int Biodeterior Biodegradation. 2016;113:342–9. https://doi.org/10.1016/j.ibiod.2016.01.024.

    Article  CAS  Google Scholar 

  58. Fernandez-Bayo JD, Yazdani R, Simmons CW, VanderGheynst JS. Comparison of thermophilic anaerobic and aerobic treatment processes for stabilization of green and food wastes and production of soil amendments. Waste Manag. 2018;77:555–64. https://doi.org/10.1016/j.wasman.2018.05.006.

    Article  CAS  Google Scholar 

  59. Waqas M, Nizami AS, Aburiazaiza AS, Barakat MA, Rashid MI, Ismail IMI. Optimizing the process of food waste compost and valorizing its applications: a case study of Saudi Arabia. J Clean Prod. 2018;176:426–38. https://doi.org/10.1016/j.jclepro.2017.12.165.

    Article  CAS  Google Scholar 

  60. Chang JI, Tsai JJ, Wu KH. Thermophilic composting of food waste. Bioresour Technol. 2006;97(1):116–22. https://doi.org/10.1016/j.biortech.2005.02.013.

    Article  CAS  Google Scholar 

  61. EPA United States Environmental Protection Agency. Types of composting and understanding the process. https://www.epa.gov/sustainable-management-food/types-composting-and-understanding-process. Updated March 12, 2021.

  62. Sipes S. Aerobic digestion of food waste as a precursor for energy and resource recovery technology. Master Thesis. University of Delaware; 2021. https://udspace.udel.edu/handle/19716/28988

  63. Gopikumar S, Tharanyalakshmi R, Kannah Y, Selvam A, Rajesh BJ. Chapter 11 - aerobic biodegradation of food wastes. In: Rajesh Banu J, Kumar G, Gunasekaran M, Kavitha S, editors. Food waste to valuable resources applications and management. United Kingdom: Academic Press; 2020. p. 235–50.

  64. Henze M, Gujer W, Mino T, Van Loosdrecht M. Activated sludge models ASM1 ASM2 ASM2d and ASM3. London: IWA Publishing; 2000. https://doi.org/10.2166/9781780402369.

    Book  Google Scholar 

  65. • Meng L, Xie L, Kinh CT, Suenaga T, Hori T, Riya S, Terada A, Hosomi M. Influence of feedstock-to-inoculum ratio on performance and microbial community succession during solid-state thermophilic anaerobic co-digestion of pig urine and rice straw. Bioresour Technol. 2018;252:127–33. https://doi.org/10.1016/j.biortech.2017.12.099. This manuscript reported on the importance of controlling the feedstock to inoculum ratio in having a flexible operation of organic matter decomposition in a solid-state anaerobic setup.

    Article  CAS  Google Scholar 

  66. Lu D, Bai H, Kong F, Liss SN, Liao B. Recent advances in membrane aerated biofilm reactors. Crit Rev Environ Sci Technol. 2021;51(7):649–703. https://doi.org/10.1080/10643389.2020.1734432.

    Article  CAS  Google Scholar 

  67. Nancharaiah YV, Kiran Kumar Reddy G. Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications. Bioresour Technol. 2018;247:1128–1143. https://doi.org/10.1016/j.biortech.2017.09.131.

  68. Kartal B, Kuenen JG, van Loosdrecht MCM. Sewage treatment with anammox. Science. 2010;328(5979):702–3. https://doi.org/10.1126/science.1185941.

    Article  CAS  Google Scholar 

  69. Liu WR, Yang DH, Shen YL, Wang JF. Two-stage partial nitritation-anammox process for high-rate mainstream deammonification. Appl Microbiol Biotechnol. 2018;102:8079–91. https://doi.org/10.1007/s00253-018-9207-y.

    Article  CAS  Google Scholar 

  70. • Wu P, Zhang XX, Wang XZ, Wang CC, Faustin F, Liu WR. Characterization of the start-up of single and two-stage anammox processes with real low-strength wastewater treatment. Chemosphere. 2020;245: 125572. https://doi.org/10.1016/j.chemosphere.2019.125572. This paper analyzed and suggested the more feasible approach on the potential application of the Anammox process for municipal wastewater treatment.

    Article  CAS  Google Scholar 

  71. de Kreuk MK, Kishida N, van Loosdrecht MC. Aerobic granular sludge—state of the art. Water Sci Technol. 2007;55(8–9):75–81. https://doi.org/10.2166/wst.2007.244.

    Article  CAS  Google Scholar 

  72. Tsuneda S, Nagano T, Hoshino T, Ejiri Y, Noda N, Hirata A. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 2003;37(20):4965–73. https://doi.org/10.1016/j.watres.2003.08.017.

    Article  CAS  Google Scholar 

  73. Santorio S, Couto AT, Amorim CL, Val del Rio A, Arregui L, Mosquera-Corral A., Castro, PML Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents. Water Res. 2021;201:117293.

  74. Qi K, Li Z, Zhang C, Tan X, Wan C, Liu X, Wang L, Lee DJ. Biodegradation of real industrial wastewater containing ethylene glycol by using aerobic granular sludge in a continuous-flow reactor: performance and resistance mechanism. Biochem Eng J. 2020;161:107711.

  75. Akaboci TRV, Gich F, Ruscalleda M, Balaguer MD, Colprim J. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: reactor performance and bacterial community. Chem Eng J. 2018;350:192–200.

    Article  CAS  Google Scholar 

  76. Vlaeminck SE, Terada A, Smets BF, De Clippeleir H, Schaubroeck T, Bolca S, Demeestere L, Mast J, Boon N, Carballa M, Verstraete W. Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Appl Environ Microbiol. 2010;76(3):900–9. https://doi.org/10.1128/AEM.02337-09.

    Article  CAS  Google Scholar 

  77. Pronk M, Giesen A, Thompson A, Robertson S, van Loosdrecht M. Aerobic granular biomass technology: advancements in design, applications and further developments. Water Pract Technol. 2017;12(4):987–96. https://doi.org/10.2166/wpt.2017.101.

    Article  Google Scholar 

  78. Guo H, van Lier JB, de Kreuk M. Digestibility of waste aerobic granular sludge from a full-scale municipal wastewater treatment system. Water Res. 2020;173: 115617. https://doi.org/10.1016/j.watres.2020.115617.

    Article  CAS  Google Scholar 

  79. Brindle K, Stephenson T, Semmens MJ. Nitrification and oxygen utilisation in a membrane aeration bioreactor. J Membr Sci. 1998;144(1):197–209. https://doi.org/10.1016/S0376-7388(98)00047-7.

    Article  CAS  Google Scholar 

  80. Terada A, Yamamoto T, Hibiya K, Tsuneda S, Hirata A. Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor. Water Sci Technol. 2004;49(11–12):263–8. https://doi.org/10.2166/wst.2004.0857.

    Article  CAS  Google Scholar 

  81. Syron E, Semmens MJ, Casey E. Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate. Chem Eng J. 2015;273:120–9. https://doi.org/10.1016/j.cej.2015.03.043.

    Article  CAS  Google Scholar 

  82. Uri-Carreño N, Nielsen PH, Gernaey KV, Flores-Alsina X. Long-term operation assessment of a full-scale membrane-aerated biofilm reactor under Nordic conditions. Sci Total Environ. 2021;779: 146366. https://doi.org/10.1016/j.scitotenv.2021.146366.

    Article  CAS  Google Scholar 

  83. Nerenberg R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr Opin Biotechnol. 2016;38:131–6. https://doi.org/10.1016/j.copbio.2016.01.015.

    Article  CAS  Google Scholar 

  84. Kinh CT, Suenaga T, Hori T, Riya S, Hosomi M, Smets BF, Terada A. Counter-diffusion biofilms have lower N2O emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: insights from depth-profile analysis. Water Res. 2017;124:363–71. https://doi.org/10.1016/j.watres.2017.07.058.

    Article  CAS  Google Scholar 

  85. Matsumoto S, Terada A, Tsuneda S. Modeling of membrane-aerated biofilm: effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J. 2007;37(1):98–107. https://doi.org/10.1016/j.bej.2007.03.013.

    Article  CAS  Google Scholar 

  86. Lackner S, Terada A, Smets BF. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: results of a modeling study. Water Res. 2008;42(4–5):1102–12. https://doi.org/10.1016/j.watres.2007.08.025.

    Article  CAS  Google Scholar 

  87. Terada A, Lackner S, Tsuneda S, Smets BF. Redox-stratification controlled biofilm (ReSCoBi) for completely autotrophic nitrogen removal: the effect of co- versus counter-diffusion on reactor performance. Biotechnol Bioeng. 2007;97(1):40–51. https://doi.org/10.1002/bit.21213.

    Article  CAS  Google Scholar 

  88. Bunse P, Orschler L, Agrawal S, Lackner S. Membrane aerated biofilm reactors for mainstream partial nitritation/anammox: experiences using real municipal wastewater. Water Res X. 2020;9: 100066. https://doi.org/10.1016/j.wroa.2020.100066.

    Article  CAS  Google Scholar 

  89. Pellicer-Nàcher C, Franck S, Gülay A, Ruscalleda M, Terada A, Al-Soud WA, Hansen MA, Sørensen SJ, Smets BF. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics. Microb Biotechnol. 2014;7(1):32–43. https://doi.org/10.1111/1751-7915.12079.

    Article  CAS  Google Scholar 

  90. Pellicer-Nàcher C, Sun S, Lackner S, Terada A, Schreiber F, Zhou Q, Smets BF. Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal: experimental demonstration. Environ Sci Technol. 2010;44(19):7628–34. https://doi.org/10.1021/es1013467.

    Article  CAS  Google Scholar 

  91. Kinh CT, Riya S, Hosomi M, Terada A. Identification of hotspots for NO and N2O production and consumption in counter- and co-diffusion biofilms for simultaneous nitrification and denitrification. Bioresour Technol. 2017;245(Pt A):318–24. https://doi.org/10.1016/j.biortech.2017.08.051.

    Article  CAS  Google Scholar 

  92. Syafiuddin A, Boopathy R, Mehmood MA. Recent advances on bacterial quorum quenching as an effective strategy to control biofouling in membrane bioreactors. Bioresour Technol Rep. 2021;15: 100745. https://doi.org/10.1016/j.biteb.2021.100745.

    Article  Google Scholar 

  93. Nakasaki K, Hirai H, Mimoto H, Quyen TNM, Koyama M, Takeda K. Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting. Sci Total Environ. 2019;671:1237–44. https://doi.org/10.1016/j.scitotenv.2019.03.341.

    Article  CAS  Google Scholar 

  94. Nakasaki K, Hirai H. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting. Waste Manag. 2017;65:29–36. https://doi.org/10.1016/j.wasman.2017.04.019.

    Article  CAS  Google Scholar 

  95. Manu MK, Kumar R, Garg A. Decentralized composting of household wet biodegradable waste in plastic drums: effect of waste turning microbial inoculum and bulking agent on product quality. J Clean Prod. 2019;226:233–41. https://doi.org/10.1016/j.jclepro.2019.03.350.

    Article  Google Scholar 

  96. Xu J, Jiang Z, Li M, Li Q. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. J Environ Manag. 2019;243:240–9. https://doi.org/10.1016/j.jenvman.2019.05.008.

    Article  CAS  Google Scholar 

  97. Fan YV, Klemeš JJ, Lee CT, Ho CS. Efficiency of microbial inoculation for a cleaner composting technology. Clean Technol Environ Policy. 2018;20(3):517–27. https://doi.org/10.1007/s10098-017-1439-5.

    Article  CAS  Google Scholar 

  98. Fan YV, Lee CT, Klemeš JJ, Chua LS, Sarmidi MR, Leow CW. Evaluation of effective microorganisms on home scale organic waste composting. J Environ Manag. 2018;216:41–8. https://doi.org/10.1016/j.jenvman.2017.04.019.

    Article  CAS  Google Scholar 

  99. Manu MK, Kumar R, Garg A. Performance assessment of improved composting system for food waste with varying aeration and use of microbial inoculum. Bioresour Technol. 2017;234:167–77. https://doi.org/10.1016/j.biortech.2017.03.023.

    Article  CAS  Google Scholar 

  100. Wang X, Pan S, Zhang Z, Lin X, Zhang Y, Chen S. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community. Bioresour Technol. 2017;224:397–404. https://doi.org/10.1016/j.biortech.2016.11.076.

    Article  CAS  Google Scholar 

  101. Song B, Manu MK, Li D, Wang C, Varjani S, Ladumor N, Michael L, Xu Y, Wong JWC. Food waste digestate composting: feedstock optimization with sawdust and mature compost. Bioresour Technol. 2021;341: 125759. https://doi.org/10.1016/j.biortech.2021.125759.

    Article  CAS  Google Scholar 

  102. • Manu MK, Wang C, Li D, Varjani S, Xu Y, Ladumor N, Lui M, Zhou J, Wong JWC. Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. Bioresour Technol. 2021;341.https://doi.org/10.1016/j.biortech.2021.125871. This paper highlights the important role of biochar amendment to compost in ameliorating the inhibitory effect of ammonium on microbes.

    Article  CAS  Google Scholar 

  103. Thakali A, MacRae JD. A review of chemical and microbial contamination in food: what are the threats to a circular food system? Environ Res. 2021;194: 110635. https://doi.org/10.1016/j.envres.2020.110635.

    Article  CAS  Google Scholar 

  104. Lu J, Xu S. Post-treatment of food waste digestate towards land application: a review. J Clean Prod. 2021;303: 127033. https://doi.org/10.1016/j.jclepro.2021.127033.

    Article  CAS  Google Scholar 

  105. Mishra SK, Yadav KD. Disposal of garden waste using food waste inoculant in rotary drums and their ranking using analytical hierarchy process. Bioresour Technol Rep. 2021;15: 100710. https://doi.org/10.1016/j.biteb.2021.100710.

    Article  Google Scholar 

  106. Tonini D, Wandl A, Meister K, Unceta PM, Taelman SE, Sanjuan-Delmás D, Dewulf J, Huygens D. Quantitative sustainability assessment of household food waste management in the Amsterdam metropolitan area. Resour Conserv Recycl. 2020;160: 104854. https://doi.org/10.1016/j.resconrec.2020.104854.

    Article  Google Scholar 

  107. Varma VS, Dhamodharan K, Kalamdhad AS. Characterization of bacterial community structure during in-vessel composting of agricultural waste by 16S rRNA sequencing. 3 Biotech. 2018;8(7):301. https://doi.org/10.1007/s13205-018-1319-7.

  108. Bhave PP, Kulkarni BN. Effect of active and passive aeration on composting of household biodegradable wastes: a decentralized approach. Int J Recycl Org Waste Agric. 2019;8:335–44. https://doi.org/10.1007/s40093-019-00306-7.

    Article  Google Scholar 

  109. Gulhane M, Pandit P, Khardenavis A, Singh D, Purohit H. Study of microbial community plasticity for anaerobic digestion of vegetable waste in anaerobic baffled reactor. Renew Energy. 2017;101:59–66. https://doi.org/10.1016/j.renene.2016.08.021.

    Article  CAS  Google Scholar 

  110. Zhang J, Li W, Lee J, Loh K, Dai Y, Tong YW. Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment. Energy. 2017;137:479–86. https://doi.org/10.1016/j.energy.2017.02.163.

    Article  CAS  Google Scholar 

  111. Zhang J, Loh K, Li W, Lim JW, Dai Y, Tong YW. Three-stage anaerobic digester for food waste. Appl Energy. 2017;194:287–95. https://doi.org/10.1016/j.apenergy.2016.10.116.

    Article  CAS  Google Scholar 

  112. Zhang W, Heaven S, Banks CJ. Continuous operation of thermophilic food waste digestion with side-stream ammonia stripping. Bioresour Technol. 2017;244(Pt 1):611–20. https://doi.org/10.1016/j.biortech.2017.07.180.

    Article  CAS  Google Scholar 

  113. Zhang J, Lv C, Tong J, et al. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour Technol. 2016;200:253–61. https://doi.org/10.1016/j.biortech.2015.10.037.

    Article  CAS  Google Scholar 

  114. Jang HM, Ha JH, Kim MS, Kim JO, Kim YM, Park JM. Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure. Water Res. 2016;99:140–8. https://doi.org/10.1016/j.watres.2016.04.051.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial assistance from Universiti Teknologi Malaysia through the Research University grant (00H52). Also to the research grants from the Ministry of Science, Technology and Innovation (TF0106B001) and Ministry of Agricultural Industries, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainul Akmar Zakaria.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, W., Latif, N.A., Zaidel, D.N.A. et al. Microbial Biotransformation and Biomineralization of Organic-Rich Waste. Curr Pollution Rep 7, 435–447 (2021). https://doi.org/10.1007/s40726-021-00205-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00205-4

Keywords

Navigation