Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications

  • Martin Humenik
  • Kiran Pawar
  • Thomas ScheibelEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1174)


The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.


Biofabrication Drug delivery Fibers Genetic engineering Recombinant production Self-assembly Spider silk Tissue engineering 



This work was supported by Elite Network of Bavaria (ENB) and TRR 225 C01.


  1. 1.
    Doblhofer E, Heidebrecht A, Scheibel T (2015) To spin or not to spin: spider silk fibers and more. Appl Microbiol Biotechnol 99(22):9361–9380PubMedCrossRefGoogle Scholar
  2. 2.
    Meyers MA, McKittrick J, Chen P-Y (2013) Structural biological materials: critical mechanics-materials connections. Science 339(6121):773–779PubMedCrossRefGoogle Scholar
  3. 3.
    Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks—biopolymers with potential for future applications. Polymers 3(1):640–661CrossRefGoogle Scholar
  4. 4.
    Neuenfeldt M, Scheibel T (2014) Silks from insects: from natural diversity to applications. In: Hoffmann KH (ed) Insect molecular biology and ecology. CRC Press, Boca Raton, pp 376–400Google Scholar
  5. 5.
    Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010) Insect silk: one name, many materials. Annu Rev Entomol 55(1):171–188PubMedCrossRefGoogle Scholar
  6. 6.
    Humenik M, Scheibel T, Smith A (2011) Spider silk: understanding the structure–function relationship of a natural fiber. In: Howorka S (ed) Progress in molecular biology and translational science, vol 103. Cambridge, MA, pp 131–185Google Scholar
  7. 7.
    Qin Z, Buehler MJ (2013) Spider silk: webs measure up. Nat Mater 12(3):185–187PubMedCrossRefGoogle Scholar
  8. 8.
    dos Santos-Pinto JRA, Garcia AMC, Arcuri HA, Esteves FG, Salles HC, Lubec G, Palma MS (2016) Silkomics: insight into the silk spinning process of spiders. J Proteome Res 15(4):1179–1193PubMedCrossRefGoogle Scholar
  9. 9.
    Vollrath F (2000) Strength and structure of spiders’ silks. Rev Mol Biotechnol 74(2):67–83CrossRefGoogle Scholar
  10. 10.
    Lefevre T, Boudreault S, Cloutier C, Pezolet M (2011) Diversity of molecular transformations involved in the formation of spider silks. J Mol Biol 405(1):238–253PubMedCrossRefGoogle Scholar
  11. 11.
    Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291(5513):2603–2605PubMedCrossRefGoogle Scholar
  12. 12.
    Casem ML, Collin MA, Ayoub NA, Hayashi CY (2010) Silk gene transcripts in the developing tubuliform glands of the western black widow, latrodectus hesperus. J Arachnol 38(1):99–103CrossRefGoogle Scholar
  13. 13.
    Hu X, Vasanthavada K, Kohler K, McNary S, Moore AMF, Vierra CA (2006) Molecular mechanisms of spider silk. Cell Mol Life Sci 63(17):1986–1999PubMedCrossRefGoogle Scholar
  14. 14.
    Eisoldt L, Thamm C, Scheibel T (2012) Review the role of terminal domains during storage and assembly of spider silk proteins. Biopolymers 97(6):355–361PubMedCrossRefGoogle Scholar
  15. 15.
    Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21(10):1950–1959PubMedCrossRefGoogle Scholar
  16. 16.
    Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303PubMedGoogle Scholar
  17. 17.
    Vollrath F, Porter D, Holland C (2011) There are many more lessons still to be learned from spider silks. Soft Matter 7:9595–9600CrossRefGoogle Scholar
  18. 18.
    Agnarsson I, Blackledge TA (2009) Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders. J Zool 278(2):134–140CrossRefGoogle Scholar
  19. 19.
    Chaw RC, Correa-Garhwal SM, Clarke TH, Ayoub NA, Hayashi CY (2015) Proteomic evidence for components of spider silk synthesis from black widow silk glands and fibers. J Proteome Res 14(10):4223–4231PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, Corbett S, Ayoub NA (2014) Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15(1):1–17CrossRefGoogle Scholar
  21. 21.
    Pham T, Chuang T, Lin A, Joo H, Tsai J, Crawford T, Zhao L, Williams C, Hsia Y, Vierra C (2014) Dragline silk: a fiber assembled with low-molecular-weight cysteine-rich proteins. Biomacromolecules 15(11):4073–4081PubMedCrossRefGoogle Scholar
  22. 22.
    Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410(6828):541–548PubMedCrossRefGoogle Scholar
  23. 23.
    Riekel C, Müller M, Vollrath F (1999) In situ x-ray diffraction during forced silking of spider silk. Macromolecules 32(13):4464–4466CrossRefGoogle Scholar
  24. 24.
    Lefevre T, Boudreault S, Cloutier C, Pezolet M (2008) Conformational and orientational transformation of silk proteins in the major ampullate gland of nephila clavipes spiders. Biomacromolecules 9(9):2399–2407PubMedCrossRefGoogle Scholar
  25. 25.
    Jenkins JE, Holland GP, Yarger JL (2012) High resolution magic angle spinning nmr investigation of silk protein structure within major ampullate glands of orb weaving spiders. Soft Matter 8(6):1947–1954CrossRefGoogle Scholar
  26. 26.
    Jenkins JE, Sampath S, Butler E, Kim J, Henning RW, Holland GP, Yarger JL (2013) Characterizing the secondary protein structure of black widow dragline silk using solid-state nmr and x-ray diffraction. Biomacromolecules 14(10):3472–3483PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Andersson M, Holm L, Ridderstråle Y, Johansson J, Rising A (2013) Morphology and composition of the spider major ampullate gland and dragline silk. Biomacromolecules 14(8):2945–2952PubMedCrossRefGoogle Scholar
  28. 28.
    Vollrath F, Knight DP (1999) Structure and function of the silk production pathway in the spider nephila edulis. Int J Biol Macromol 24(2–3):243–249PubMedCrossRefGoogle Scholar
  29. 29.
    Xu M, Lewis RV (1990) Structure of a protein superfiber – spider dragline silk. Proc Natl Acad Sci U S A 87(18):7120–7124PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2(6):e514PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K (2005) Characterization of the protein components of nephila clavipes dragline silk. Biochemistry 44(12):4727–4736PubMedCrossRefGoogle Scholar
  32. 32.
    Han L, Zhang L, Zhao T, Wang Y, Nakagaki M (2013) Analysis of a new type of major ampullate spider silk gene, masp1s. Int J Biol Macromol 56:156–161PubMedCrossRefGoogle Scholar
  33. 33.
    Liu Y, Sponner A, Porter D, Vollrath F (2008) Proline and processing of spider silks. Biomacromolecules 9(1):116–121PubMedCrossRefGoogle Scholar
  34. 34.
    Marhabaie M, Leeper TC, Blackledge TA (2014) Protein composition correlates with the mechanical properties of spider (argiope trifasciata) dragline silk. Biomacromolecules 15(1):20–29PubMedCrossRefGoogle Scholar
  35. 35.
    Andersen SO (1970) Amino acid composition of spider silks. Comp Biochem Physiol 35(3):705–711CrossRefGoogle Scholar
  36. 36.
    Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engstrom W (2005) Spider silk proteins-mechanical property and gene sequence. Zool Sci 22(3):273–281PubMedCrossRefGoogle Scholar
  37. 37.
    Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18(9):374–379PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Y, Zhao A-C, Sima Y-H, Lu C, Xiang Z-H, Nakagaki M (2013) The molecular structures of major ampullate silk proteins of the wasp spider, argiope bruennichi: a second blueprint for synthesizing de novo silk. Comp Biochem Physiol B Biochem Mol Biol 164(3):151–158PubMedCrossRefGoogle Scholar
  39. 39.
    dos Santos-Pinto JRA, Arcuri HA, Priewalder H, Salles HC, Palma MS, Lubec G (2015) Structural model for the spider silk protein spidroin-1. J Proteome Res 14(9):3859–3870PubMedCrossRefGoogle Scholar
  40. 40.
    dos Santos-Pinto JRA, Lamprecht G, Chen W-Q, Heo S, Hardy JG, Priewalder H, Scheibel TR, Palma MS, Lubec G (2014) Structure and post-translational modifications of the web silk protein spidroin-1 from nephila spiders. J Proteome 105:174–185CrossRefGoogle Scholar
  41. 41.
    Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW (1996) 13c nmr of nephila clavipes major ampullate silk gland. Biophys J 71(6):3442–3447PubMedCrossRefGoogle Scholar
  42. 42.
    Xu D, Guo C, Holland GP (2015) Probing the impact of acidification on spider silk assembly kinetics. Biomacromolecules 16(7):2072–2079PubMedCrossRefGoogle Scholar
  43. 43.
    Hronska M, van Beek JD, Williamson PTF, Vollrath F, Meier BH (2004) Nmr characterization of native liquid spider dragline silk from nephila edulis. Biomacromolecules 5(3):834–839PubMedCrossRefGoogle Scholar
  44. 44.
    Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD (2010) Self-assembly of spider silk proteins is controlled by a ph-sensitive relay. Nature 465(7295):236–239PubMedCrossRefGoogle Scholar
  45. 45.
    Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A highly conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465(7295):239–242PubMedCrossRefGoogle Scholar
  46. 46.
    Sponner A, Unger E, Grosse F, Klaus W (2005) Differential polymerization of the two main protein components of dragline silk during fibre spinning. Nat Mater 4(10):772–775PubMedCrossRefGoogle Scholar
  47. 47.
    Rising A, Johansson J (2015) Toward spinning artificial spider silk. Nat Chem Biol 11(5):309–315PubMedCrossRefGoogle Scholar
  48. 48.
    Vollrath F, Knight DP, Hu XW (1998) Silk production in a spider involves acid bath treatment. Proc R Soc London Ser B 265(1398):817–820CrossRefGoogle Scholar
  49. 49.
    Knight DP, Vollrath F (2001) Changes in element composition along the spinning duct in a nephila spider. Naturwissenschaften 88(4):179–182PubMedCrossRefGoogle Scholar
  50. 50.
    Gauthier M, Leclerc J, Lefèvre T, Gagné SM, Auger M (2014) Effect of ph on the structure of the recombinant c-terminal domain of nephila clavipes dragline silk protein. Biomacromolecules 15(12):4447–4454PubMedCrossRefGoogle Scholar
  51. 51.
    Bauer J, Scheibel T (2017) Conformational stability and interplay of helical n- and c-terminal domains with implications on major ampullate spidroin assembly. Biomacromolecules 18(3):835–845PubMedCrossRefGoogle Scholar
  52. 52.
    Kronqvist N, Otikovs M, Chmyrov V, Chen G, Andersson M, Nordling K, Landreh M, Sarr M, Jörnvall H, Wennmalm S, Widengren J, Meng Q, Rising A, Otzen D, Knight SD, Jaudzems K, Johansson J (2014) Sequential ph-driven dimerization and stabilization of the n-terminal domain enables rapid spider silk formation. Nat Commun 5:3254PubMedCrossRefGoogle Scholar
  53. 53.
    Hagn F, Thamm C, Scheibel T, Kessler H (2011) Ph-dependent dimerization and salt-dependent stabilization of the n-terminal domain of spider dragline silk-implications for fiber formation. Angew Chem Int Ed 50(1):310–313CrossRefGoogle Scholar
  54. 54.
    Jaudzems K, Askarieh G, Landreh M, Nordling K, Hedhammar M, Jörnvall H, Rising A, Knight SD, Johansson J (2012) Ph dependent dimerization of spider silk n-terminal domain requires relocation of a wedged tryptophan side chain. J Mol Biol 422(4):477–487PubMedCrossRefGoogle Scholar
  55. 55.
    Schwarze S, Zwettler FU, Johnson CM, Neuweiler H (2013) The n-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. Nat Commun 4:2815PubMedCrossRefGoogle Scholar
  56. 56.
    Ries J, Schwarze S, Johnson CM, Neuweiler H (2014) Microsecond folding and domain motions of a spider silk protein structural switch. J Am Chem Soc 136(49):17136–17144PubMedCrossRefGoogle Scholar
  57. 57.
    Kurut A, Dicko C, Lund M (2015) Dimerization of terminal domains in spiders silk proteins is controlled by electrostatic anisotropy and modulated by hydrophobic patches. ACS Biomater Sci Eng 1(6):363–371CrossRefGoogle Scholar
  58. 58.
    Barroso da Silva FL, Pasquali S, Derreumaux P, Dias LG (2016) Electrostatics analysis of the mutational and ph effects of the n-terminal domain self-association of the major ampullate spidroin. Soft Matter 12(25):5600–5612PubMedCrossRefGoogle Scholar
  59. 59.
    Bauer J, Scheibel T (2017) Dimerization of the conserved n-terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain. Biomacromolecules 18(8):2521–2528PubMedCrossRefGoogle Scholar
  60. 60.
    Bauer J, Schaal D, Eisoldt L, Schweimer K, Schwarzinger S, Scheibel T (2016) Acidic residues control the dimerization of the n-terminal domain of black widow spiders’ major ampullate spidroin 1. Sci Rep 6:34442PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Holland GP, Creager MS, Jenkins JE, Lewis RV, Yarger JL (2008) Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state nmr spectroscopy. J Am Chem Soc 130(30):9871–9877PubMedCrossRefGoogle Scholar
  62. 62.
    van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci U S A 99(16):10266–10271PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Plaza GR, Perez-Rigueiro J, Riekel C, Perea GB, Agullo-Rueda F, Burghammer M, Guinea GV, Elices M (2012) Relationship between microstructure and mechanical properties in spider silk fibers: identification of two regimes in the microstructural changes. Soft Matter 8(22):6015–6026CrossRefGoogle Scholar
  64. 64.
    Simmons AH, Michal CA, Jelinski LW (1996) Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271(5245):84–87PubMedCrossRefGoogle Scholar
  65. 65.
    Jenkins JE, Creager MS, Lewis RV, Holland GP, Yarger JL (2010) Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11(1):192–200PubMedCrossRefGoogle Scholar
  66. 66.
    Termonia Y (1994) Molecular modeling of spider silk elasticity. Macromolecules 27(25):7378–7381CrossRefGoogle Scholar
  67. 67.
    Eisoldt L, Smith A, Scheibel T (2011) Decoding the secrets of spider silk. Mater Today 14(3):80–86CrossRefGoogle Scholar
  68. 68.
    Su I, Buehler MJ (2016) Nanomechanics of silk: the fundamentals of a strong, tough and versatile material. Nanotechnology 27(30):302001PubMedCrossRefGoogle Scholar
  69. 69.
    Heidebrecht A, Scheibel T (2013) Recombinant production of spider silk proteins. Adv Appl Microbiol 82:115–153PubMedCrossRefGoogle Scholar
  70. 70.
    Agnarsson I, Kuntner M, Blackledge TA (2010) Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS One 5(9):e11234PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lee S-M, Pippel E, Moutanabbir O, Kim J-H, Lee H-J, Knez M (2014) In situ raman spectroscopic study of al-infiltrated spider dragline silk under tensile deformation. ACS Appl Mater Interfaces 6(19):16827–16834PubMedCrossRefGoogle Scholar
  72. 72.
    Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10(7):2626–2634PubMedCrossRefGoogle Scholar
  73. 73.
    Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater 9(4):359–367PubMedCrossRefGoogle Scholar
  74. 74.
    Du N, Liu XY, Narayanan J, Li LA, Lim MLM, Li DQ (2006) Design of superior spider silk: from nanostructure to mechanical properties. Biophys J 91(12):4528–4535PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Anton AM, Heidebrecht A, Mahmood N, Beiner M, Scheibel T, Kremer F (2017) Foundation of the outstanding toughness in biomimetic and natural spider silk. Biomacromolecules 18(12):3954–3962PubMedCrossRefGoogle Scholar
  76. 76.
    Chung H, Kim TY, Lee SY (2012) Recent advances in production of recombinant spider silk proteins. Curr Opin Biotechnol 23(6):957–964PubMedCrossRefGoogle Scholar
  77. 77.
    Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL (2013) Recombinant DNA production of spider silk proteins. Microb Biotechnol 6(6):651–663PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43(42):13604–13612PubMedCrossRefGoogle Scholar
  79. 79.
    Eisoldt L, Hardy JG, Heim M, Scheibel TR (2010) The role of salt and shear on the storage and assembly of spider silk proteins. J Struct Biol 170(2):413–419PubMedCrossRefGoogle Scholar
  80. 80.
    Exler JH, Hummerich D, Scheibel T (2007) The amphiphilic properties of spider silks are important for spinning. Angew Chem Int Ed 46(19):3559–3562CrossRefGoogle Scholar
  81. 81.
    Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci U S A 105(18):6590–6595PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, Scheibel T (2015) Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 27(13):2189–2194PubMedCrossRefGoogle Scholar
  83. 83.
    Renberg B, Andersson-Svahn H, Hedhammar M (2014) Mimicking silk spinning in a microchip. Sensors Actuators B Chem 195:404–408CrossRefGoogle Scholar
  84. 84.
    Bini E, Knight DP, Kaplan DL (2004) Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol 335(1):27–40PubMedCrossRefGoogle Scholar
  85. 85.
    Zbilut JP, Scheibel T, Huemmerich D, Webber CL, Colafranceschi M, Giuliani A (2005) Spatial stochastic resonance in protein hydrophobicity. Phys Lett A 346(1–3):33–41CrossRefGoogle Scholar
  86. 86.
    Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061PubMedCrossRefGoogle Scholar
  87. 87.
    Rabotyagova OS, Cebe P, Kaplan DL (2009) Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10(2):229–236PubMedCrossRefGoogle Scholar
  88. 88.
    Rabotyagova OS, Cebe P, Kaplan DL (2010) Role of polyalanine domains in β-sheet formation in spider silk block copolymers. Macromol Biosci 10(1):49–59PubMedCrossRefGoogle Scholar
  89. 89.
    Borisov O, Zhulina E, Leermakers FM, Müller AE (2011) Self-assembled structures of amphiphilic ionic block copolymers: theory, self-consistent field modeling and experiment. In: Müller AHE, Borisov O (eds) Self organized nanostructures of amphiphilic block copolymers i, Advances in polymer science, vol 241. Springer, Berlin/Heidelberg, pp 57–129CrossRefGoogle Scholar
  90. 90.
    Tokareva OS, Lin S, Jacobsen MM, Huang W, Rizzo D, Li D, Simon M, Staii C, Cebe P, Wong JY, Buehler MJ, Kaplan DL (2014) Effect of sequence features on assembly of spider silk block copolymers. J Struct Biol 186(3):412–419PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen MM, Huang W, Rizzo DJ, Li D, Staii C, Pugno NM, Wong JY, Kaplan DL, Buehler MJ (2015) Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat Commun 6:6892PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Krishnaji ST, Bratzel G, Kinahan ME, Kluge JA, Staii C, Wong JY, Buehler MJ, Kaplan DL (2013) Sequence–structure–property relationships of recombinant spider silk proteins: integration of biopolymer design, processing, and modeling. Adv Funct Mater 23(2):241–253CrossRefGoogle Scholar
  93. 93.
    Xia X-X, Qian Z-G, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107(32):14059–14063PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Thamm C, Scheibel T (2017) Recombinant production, characterization, and fiber spinning of an engineered short major ampullate spidroin (masp1s). Biomacromolecules 18(4):1365–1372PubMedCrossRefGoogle Scholar
  95. 95.
    Humenik M, Magdeburg M, Scheibel T (2014) Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. J Struct Biol 186:431–437PubMedCrossRefGoogle Scholar
  96. 96.
    Wohlrab S, Thamm C, Scheibel T (2014) The power of recombinant spider silk proteins. In: Asakura T, Miller T (eds) Biotechnology of silk, Biologically-inspired systems, vol 5. Springer, Dordrecht, pp 179–201CrossRefGoogle Scholar
  97. 97.
    An B, Tang-Schomer MD, Huang W, He J, Jones JA, Lewis RV, Kaplan DL (2015) Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks. Biomaterials 48:137–146PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fu C, Shao Z, Vollrath F (2009) Animal silks: their structures, properties and artificial production. Chem Commun 43:6515–6529CrossRefGoogle Scholar
  99. 99.
    Humenik M, Drechsler M, Scheibel T (2014) Controlled hierarchical assembly of spider silk-DNA chimeras into ribbons and raft-like morphologies. Nano Lett 14(7):3999–4004PubMedCrossRefGoogle Scholar
  100. 100.
    Schacht K, Scheibel T (2011) Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12(7):2488–2495PubMedCrossRefGoogle Scholar
  101. 101.
    Slotta UK, Rammensee S, Gorb S, Scheibel T (2008) An engineered spider silk protein forms microspheres. Angew Chem Int Ed 47(24):4592–4594CrossRefGoogle Scholar
  102. 102.
    Humenik M, Smith AM, Arndt S, Scheibel T (2015) Ion and seed dependent fibril assembly of a spidroin core domain. J Struct Biol 191(2):130–138PubMedCrossRefGoogle Scholar
  103. 103.
    Hermanson KD, Huemmerich D, Scheibel T, Bausch AR (2007) Engineered microcapsules fabricated from reconstituted spider silk. Adv Mater 19(14):1810–1815CrossRefGoogle Scholar
  104. 104.
    Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A Mater Sci Process 82(2):219–222CrossRefGoogle Scholar
  105. 105.
    Schacht K, Vogt J, Scheibel T (2016) Foams made of engineered recombinant spider silk proteins as 3d scaffolds for cell growth. ACS Biomater Sci Eng 2(4):517–525CrossRefGoogle Scholar
  106. 106.
    Chen X, Knight DP, Vollrath F (2002) Rheological characterization of nephila spidroin solution. Biomacromolecules 3(4):644–648PubMedCrossRefGoogle Scholar
  107. 107.
    Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Amyloidogenic nature of spider silk. Eur J Biochem 269(16):4159–4163PubMedCrossRefGoogle Scholar
  108. 108.
    Du N, Yang Z, Liu XY, Li Y, Xu HY (2011) Structural origin of the strain-hardening of spider silk. Adv Funct Mater 21(4):772–778CrossRefGoogle Scholar
  109. 109.
    Numata K, Kaplan DL (2011) Differences in cytotoxicity of beta-sheet peptides originated from silk and amyloid beta. Macromol Biosci 11(1):60–64PubMedCrossRefGoogle Scholar
  110. 110.
    Oroudjev E, Soares J, Arcidiacono S, Thompson JB, Fossey SA, Hansma HG (2002) Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci U S A 99(suppl 2):6460–6465PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Slotta U, Hess S, Spiess K, Stromer T, Serpell L, Scheibel T (2007) Spider silk and amyloid fibrils: a structural comparison. Macromol Biosci 7(2):183–188PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Humenik M, Smith AM, Arndt S, Scheibel T (2015) Data for ion and seed dependent fibril assembly of a spidroin core domain. Data Brief 4:571–576PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I (2005) Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5(7):1343–1346PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Smith JF, Knowles TPJ, Dobson CM, MacPhee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci U S A 103(43):15806–15811PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318(5858):1900–1903PubMedCrossRefGoogle Scholar
  116. 116.
    Adamcik J, Jung J-M, Flakowski J, De Los RP, Dietler G, Mezzenga R (2010) Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat Nanotechnol 5(6):423–428PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Sachse C, Grigorieff N, Fändrich M (2010) Nanoscale flexibility parameters of alzheimer amyloid fibrils determined by electron cryo-microscopy. Angew Chem Int Ed 49(7):1321–1323CrossRefGoogle Scholar
  118. 118.
    Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6(8):469–479PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lintz ES, Scheibel TR (2013) Dragline, egg stalk and byssus: a comparison of outstanding protein fibers and their potential for developing new materials. Adv Funct Mater 23(36):4467–4482CrossRefGoogle Scholar
  120. 120.
    Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed 47(22):4062–4069CrossRefGoogle Scholar
  121. 121.
    Knowles TPJ, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5(3):204–207PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1(3):195–200PubMedCrossRefGoogle Scholar
  123. 123.
    Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TCB, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci U S A 98(21):11857–11862PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lara C, Adamcik J, Jordens S, Mezzenga R (2011) General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12(5):1868–1875PubMedCrossRefGoogle Scholar
  125. 125.
    Humenik M, Scheibel T (2014) Self-assembly of nucleic acids, silk and hybrid materials thereof. J Phys Condens Matter 26(50):503102PubMedCrossRefGoogle Scholar
  126. 126.
    Humenik M, Scheibel T (2014) Nanomaterial building blocks based on spider silk–oligonucleotide conjugates. ACS Nano 8(2):1342–1349PubMedCrossRefGoogle Scholar
  127. 127.
    Humenik M, Mohrand M, Scheibel T (2018) Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity. Bioconjug Chem 29(4):898–904PubMedCrossRefGoogle Scholar
  128. 128.
    Jansson R, Courtin CM, Sandgren M, Hedhammar M (2015) Rational design of spider silk materials genetically fused with an enzyme. Adv Funct Mater 25(33):5343–5352CrossRefGoogle Scholar
  129. 129.
    Rammensee S, Huemmerich D, Hermanson KD, Scheibel T, Bausch AR (2006) Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl Phys A Mater Sci Process 82(2):261–264CrossRefGoogle Scholar
  130. 130.
    Jones JA, Harris TI, Tucker CL, Berg KR, Christy SY, Day BA, Gaztambide DA, Needham NJC, Ruben AL, Oliveira PF, Decker RE, Lewis RV (2015) More than just fibers: an aqueous method for the production of innovative recombinant spider silk protein materials. Biomacromolecules 16(4):1418–1425PubMedCrossRefGoogle Scholar
  131. 131.
    DeSimone E, Schacht K, Pellert A, Scheibel T (2017) Recombinant spider silk-based bioinks. Biofabrication 9(4):044104PubMedCrossRefGoogle Scholar
  132. 132.
    Thamm C, DeSimone E, Scheibel T (2017) Characterization of hydrogels made of a novel spider silk protein emasp1s and evaluation for 3d printing. Macromol Biosci 17(11):1700141CrossRefGoogle Scholar
  133. 133.
    Jungst T, Smolan W, Schacht K, Scheibel T, Groll J (2016) Strategies and molecular design criteria for 3d printable hydrogels. Chem Rev 116(3):1496–1539PubMedCrossRefGoogle Scholar
  134. 134.
    Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41(2):909–930PubMedCrossRefGoogle Scholar
  135. 135.
    Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3d spider silk constructs. Angew Chem Int Ed 54(9):2816–2820CrossRefGoogle Scholar
  136. 136.
    Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the hofmeister series. Curr Opin Chem Biol 10(6):658–663PubMedCrossRefGoogle Scholar
  137. 137.
    Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 48(20):3584–3596CrossRefGoogle Scholar
  138. 138.
    Lammel A, Schwab M, Slotta U, Winter G, Scheibel T (2008) Processing conditions for the formation of spider silk microspheres. ChemSusChem 1(5):413–416PubMedCrossRefGoogle Scholar
  139. 139.
    Blüm C, Scheibel T (2012) Control of drug loading and release properties of spider silk sub-microparticles. BioNanoScience 2(2):67–74CrossRefGoogle Scholar
  140. 140.
    Lucke M, Mottas I, Herbst T, Hotz C, Römer L, Schierling M, Herold HM, Slotta U, Spinetti T, Scheibel T, Winter G, Bourquin C, Engert J (2018) Engineered hybrid spider silk particles as delivery system for peptide vaccines. Biomaterials 172:105–115PubMedCrossRefGoogle Scholar
  141. 141.
    Krishnaji ST, Huang W, Cebe P, Kaplan DL (2014) Influence of solution parameters on phase diagram of recombinant spider silk-like block copolymers. Macromol Chem Phys 215(12):1230–1238CrossRefGoogle Scholar
  142. 142.
    Florczak A, Mackiewicz A, Dams-Kozlowska H (2014) Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromolecules 15(8):2971–2981PubMedCrossRefGoogle Scholar
  143. 143.
    Jastrzebska K, Felcyn E, Kozak M, Szybowicz M, Buchwald T, Pietralik Z, Jesionowski T, Mackiewicz A, Dams-Kozlowska H (2016) The method of purifying bioengineered spider silk determines the silk sphere properties. Sci Rep 6:28106PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Elsner MB, Herold HM, Müller-Herrmann S, Bargel H, Scheibel T (2015) Enhanced cellular uptake of engineered spider silk particles. Biomater Sci 3(3):543–551PubMedCrossRefGoogle Scholar
  145. 145.
    Neubauer MP, Blüm C, Agostini E, Engert J, Scheibel T, Fery A (2013) Micromechanical characterization of spider silk particles. Biomater Sci 1(11):1160–1165CrossRefGoogle Scholar
  146. 146.
    Helfricht N, Klug M, Mark A, Kuznetsov V, Blüm C, Scheibel T, Papastavrou G (2013) Surface properties of spider silk particles in solution. Biomater Sci 1(11):1166–1171CrossRefGoogle Scholar
  147. 147.
    Helfricht N, Doblhofer E, Duval JFL, Scheibel T, Papastavrou G (2016) Colloidal properties of recombinant spider silk protein particles. J Phys Chem C 120(32):18015–18027CrossRefGoogle Scholar
  148. 148.
    Hermanson KD, Harasim MB, Scheibel T, Bausch AR (2007) Permeability of silk microcapsules made by the interfacial adsorption of protein. Phys Chem Chem Phys 9(48):6442–6446PubMedCrossRefGoogle Scholar
  149. 149.
    Blüm C, Nichtl A, Scheibel T (2014) Spider silk capsules as protective reaction containers for enzymes. Adv Funct Mater 24(6):763–768CrossRefGoogle Scholar
  150. 150.
    Slotta U, Tammer M, Kremer F, Koelsch P, Scheibel T (2006) Structural analysis of spider silk films. Supramol Chem 18(5):465–471CrossRefGoogle Scholar
  151. 151.
    Metwalli E, Slotta U, Darko C, Roth SV, Scheibel T, Papadakis CM (2007) Structural changes of thin films from recombinant spider silk proteins upon post-treatment. Appl Phys A Mater Sci Process 89(3):655–661CrossRefGoogle Scholar
  152. 152.
    Spiess K, Wohlrab S, Scheibel T (2010) Structural characterization and functionalization of engineered spider silk films. Soft Matter 6(17):4168–4174CrossRefGoogle Scholar
  153. 153.
    Gomes SC, Leonor IB, Mano JF, Reis RL, Kaplan DL (2011) Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32(18):4255–4266PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Tucker CL, Jones JA, Bringhurst HN, Copeland CG, Addison JB, Weber WS, Mou Q, Yarger JL, Lewis RV (2014) Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents. Biomacromolecules 15(8):3158–3170PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Spiess K, Ene R, Keenan CD, Senker J, Kremer F, Scheibel T (2011) Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films. J Mater Chem 21(35):13594–13604CrossRefGoogle Scholar
  156. 156.
    Young SL, Gupta M, Hanske C, Fery A, Scheibel T, Tsukruk VV (2012) Utilizing conformational changes for patterning thin films of recombinant spider silk proteins. Biomacromolecules 13(10):3189–3199PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Wohlrab S, Spie ST (2012) Varying surface hydrophobicities of coatings made of recombinant spider silk proteins. J Mater Chem 22(41):22050–22054CrossRefGoogle Scholar
  158. 158.
    Huang W, Krishnaji S, Tokareva OR, Kaplan D, Cebe P (2014) Influence of water on protein transitions: morphology and secondary structure. Macromolecules 47(22):8107–8114CrossRefGoogle Scholar
  159. 159.
    Currie HA, Deschaume O, Naik RR, Perry CC, Kaplan DL (2011) Genetically engineered chimeric silk-silver binding proteins. Adv Funct Mater 21(15):2889–2895PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Junghans F, Morawietz M, Conrad U, Scheibel T, Heilmann A, Spohn U (2006) Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm. Appl Phys A Mater Sci Process 82(2):253–260CrossRefGoogle Scholar
  161. 161.
    Wohlrab S, Müller S, Schmidt A, Neubauer S, Kessler H, Leal-Egaña A, Scheibel T (2012) Cell adhesion and proliferation on rgd-modified recombinant spider silk proteins. Biomaterials 33(28):6650–6659PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Widhe M, Johansson U, Hillerdahl C-O, Hedhammar M (2013) Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials 34(33):8223–8234PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Widhe M, Bysell H, Nystedt S, Schenning I, Malmsten M, Johansson J, Rising A, Hedhammar M (2010) Recombinant spider silk as matrices for cell culture. Biomaterials 31(36):9575–9585PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Lewicka M, Hermanson O, Rising AU (2012) Recombinant spider silk matrices for neural stem cell cultures. Biomaterials 33(31):7712–7717PubMedCrossRefGoogle Scholar
  165. 165.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic, KidlingtonGoogle Scholar
  166. 166.
    Hardy JG, Scheibel TR (2009) Silk-inspired polymers and proteins. Biochem Soc Trans 37(Pt 4):677–681PubMedCrossRefGoogle Scholar
  167. 167.
    Leal-Egana A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55(3):155–167PubMedCrossRefGoogle Scholar
  168. 168.
    Aigner TB, DeSimone E, Scheibel T (2018) Biomedical applications of recombinant silk-based materials. Adv Mater 30(19):1704636CrossRefGoogle Scholar
  169. 169.
    Vollrath F, Barth P, Basedow A, Engstrom W, List H (2002) Local tolerance to spider silks and protein polymers in vivo. In Vivo 16(4):229–234PubMedGoogle Scholar
  170. 170.
    Gellynck K, Verdonk PC, Van Nimmen E, Almqvist KF, Gheysens T, Schoukens G, Van Langenhove L, Kiekens P, Mertens J, Verbruggen G (2008) Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci Mater Med 19(11):3399–3409PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM (2008) Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif 41(3):408–420PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Radtke C, Allmeling C, Waldmann KH, Reimers K, Thies K, Schenk HC, Hillmer A, Guggenheim M, Brandes G, Vogt PM (2011) Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One 6(2):e16990PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Moisenovich MM, Pustovalova OL, Arhipova AY, Vasiljeva TV, Sokolova OS, Bogush VG, Debabov VG, Sevastianov VI, Kirpichnikov MP, Agapov II (2011) In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. J Biomed Mater Res A 96(1):125–131PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Camilla Fredriksson MH, Feinstein R, Nordling K, Kratz G, Johansson J, Rising FHA (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2(4):1908–1922PubMedCentralCrossRefGoogle Scholar
  175. 175.
    Langer R (1990) New methods of drug delivery. Science 249(4976):1527–1533PubMedCrossRefGoogle Scholar
  176. 176.
    Numata K, Kaplan DL (2010) Silk-based gene carriers with cell membrane destabilizing peptides. Biomacromolecules 11(11):3189–3195PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605–1610PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, Kaplan DL (2012) Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 12(1):75–82PubMedCrossRefGoogle Scholar
  179. 179.
    Doblhofer E, Scheibel T (2015) Engineering of recombinant spider silk proteins allows defined uptake and release of substances. J Pharm Sci 104(3):988–994PubMedCrossRefGoogle Scholar
  180. 180.
    Wang X, Yucel T, Lu Q, Hu X, Kaplan DL (2010) Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31(6):1025–1035PubMedCrossRefGoogle Scholar
  181. 181.
    Patil Y, Panyam J (2009) Polymeric nanoparticles for sirna delivery and gene silencing. Int J Pharm 367(1–2):195–203PubMedCrossRefGoogle Scholar
  182. 182.
    Sushmita Sundar JK, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11(1):1–13Google Scholar
  183. 183.
    Liebmann B, Huemmerich D, Scheibel T, Fehr M (2008) Formulation of poorly water-soluble substances using self-assembling spider silk protein. Colloids Surf A Physicochem Eng Asp 331(1–2):126–132CrossRefGoogle Scholar
  184. 184.
    Lammel A, Schwab M, Hofer M, Winter G, Scheibel T (2011) Recombinant spider silk particles as drug delivery vehicles. Biomaterials 32(8):2233–2240PubMedCrossRefGoogle Scholar
  185. 185.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926PubMedCrossRefGoogle Scholar
  186. 186.
    Schacht K, Scheibel T (2014) Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr Opin Biotechnol 29:62–69PubMedCrossRefGoogle Scholar
  187. 187.
    Petzold J, Aigner TB, Touska F, Zimmermann K, Scheibel T, Engel FB (2017) Surface features of recombinant spider silk protein eadf4(κ16)-made materials are well-suited for cardiac tissue engineering. Adv Funct Mater 27(36):1701427CrossRefGoogle Scholar
  188. 188.
    Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211(4486):1052–1054PubMedCrossRefGoogle Scholar
  189. 189.
    Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4):413–428PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schafer-Nolte F, Allmeling C, Kasper C, Vogt PM (2011) Artificial skin-culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS One 6(7):e21833PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Widhe M, Shalaly ND, Hedhammar M (2016) A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices. Biomaterials 74:256–266PubMedCrossRefGoogle Scholar
  192. 192.
    Millennium WSGotBoMCatSotN (2003) The burden of musculoskeletal conditions at the start of the new millennium. World Health Organ Tech Rep Ser 919:1–218Google Scholar
  193. 193.
    Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci 362(1825):2821–2850CrossRefGoogle Scholar
  194. 194.
    Parikh SN (2002) Bone graft substitutes in modern orthopedics. Orthopedics 25(11):1301–1309. quiz 1310-1301PubMedGoogle Scholar
  195. 195.
    Mark DE, Hollinger JO, Hastings C Jr, Chen G, Marden LJ, Reddi AH (1990) Repair of calvarial nonunions by osteogenin, a bone-inductive protein. Plast Reconstr Surg 86(4):623–630. discussion 631-622PubMedCrossRefGoogle Scholar
  196. 196.
    Huang J, Wong C, George A, Kaplan DL (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28(14):2358–2367PubMedCrossRefGoogle Scholar
  197. 197.
    Wong Po Foo C, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci U S A 103(25):9428–9433PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Belton DJ, Mieszawska AJ, Currie HA, Kaplan DL, Perry CC (2012) Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir 28(9):4373–4381PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Mieszawska AJ, Nadkarni LD, Perry CC, Kaplan DL (2010) Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater 22(20):5780–5785PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Chen MB, Zhang F, Lineaweaver WC (2006) Luminal fillers in nerve conduits for peripheral nerve repair. Ann Plast Surg 57(4):462–471PubMedCrossRefGoogle Scholar
  201. 201.
    Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6(1):13–26PubMedCrossRefGoogle Scholar
  202. 202.
    Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW Jr (2002) Bioactive poly(l-lactic acid) conduits seeded with schwann cells for peripheral nerve regeneration. Biomaterials 23(3):841–848PubMedCrossRefGoogle Scholar
  203. 203.
    Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B (2006) Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials 27(8):1425–1436PubMedCrossRefGoogle Scholar
  204. 204.
    Lundborg G, Rosen B, Abrahamson SO, Dahlin L, Danielsen N (1994) Tubular repair of the median nerve in the human forearm. preliminary findings. J Hand Surg (Br) 19(3):273–276CrossRefGoogle Scholar
  205. 205.
    Stanec S, Stanec Z (1998) Reconstruction of upper-extremity peripheral-nerve injuries with eptfe conduits. J Reconstr Microsurg 14(4):227–232PubMedCrossRefGoogle Scholar
  206. 206.
    Letourneau PC, Condic ML, Snow DM (1994) Interactions of developing neurons with the extracellular matrix. J Neurosci 14(3 Pt 1):915–928PubMedCrossRefGoogle Scholar
  207. 207.
    Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM (2006) Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 10(3):770–777PubMedCrossRefGoogle Scholar
  208. 208.
    Borkner CB, Elsner MB, Scheibel T (2014) Coatings and films made of silk proteins. ACS Appl Mater Interfaces 6(18):15611–15625PubMedCrossRefGoogle Scholar
  209. 209.
    Zeplin PH, Berninger AK, Maksimovikj NC, van Gelder P, Scheibel T, Walles H (2014) Improving the biocompatibility of silicone implants using spider silk coatings: immunohistochemical analysis of capsule formation. Handchir Mikrochir Plast Chir 46(6):336–341PubMedCrossRefGoogle Scholar
  210. 210.
    Borkner CB, Wohlrab S, Möller E, Lang G, Scheibel T (2017) Surface modification of polymeric biomaterials using recombinant spider silk proteins. ACS Biomater Sci Eng 3(5):767–775CrossRefGoogle Scholar
  211. 211.
    Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R (2009) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):022001PubMedCrossRefGoogle Scholar
  212. 212.
    Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TB, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001PubMedCrossRefGoogle Scholar
  213. 213.
    Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028PubMedCrossRefGoogle Scholar
  214. 214.
    Murphy SV, Atala A (2014) 3d bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785PubMedCrossRefGoogle Scholar
  215. 215.
    Skardal A, Atala A (2015) Biomaterials for integration with 3-d bioprinting. Ann Biomed Eng 43(3):730–746PubMedCrossRefGoogle Scholar
  216. 216.
    Catros S, Fricain JC, Guillotin B, Pippenger B, Bareille R, Remy M, Lebraud E, Desbat B, Amedee J, Guillemot F (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3(2):025001PubMedCrossRefGoogle Scholar
  217. 217.
    Chimene D, Lennox KK, Kaunas RR, Gaharwar AK (2016) Advanced bioinks for 3d printing: a materials science perspective. Ann Biomed Eng 44(6):2090–2102PubMedCrossRefGoogle Scholar
  218. 218.
    DeSimone E, Schacht K, Jungst T, Groll J, Scheibel T (2015) Biofabrication of 3d constructs: fabrication technologies and spider silk proteins as bioinks. Pure Appl Chem 87(8):737–749CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Martin Humenik
    • 1
  • Kiran Pawar
    • 2
  • Thomas Scheibel
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    Email author
  1. 1.Biomaterials, Faculty of Engineering ScienceUniversity of BayreuthBayreuthGermany
  2. 2.Blusson Spinal Cord CentreUniversity of British ColumbiaVancouverCanada
  3. 3.Bayreuth Center for Colloids and Interfaces (BZKG)University of BayreuthBayreuthGermany
  4. 4.Research Center Bio-Macromolecules (BIOmac)University of BayreuthBayreuthGermany
  5. 5.Bayreuth Center for Molecular Biosciences (BZMB)University of BayreuthBayreuthGermany
  6. 6.Bayreuth Center for Material Science (BayMAT)University of BayreuthBayreuthGermany
  7. 7.Bavarian Polymer Institute (BPI)University of BayreuthBayreuthGermany

Personalised recommendations