The Global Economic Impact of Neurodegenerative Diseases: Opportunities and Challenges

  • Walia Zahra
  • Sachchida Nand Rai
  • Hareram Birla
  • Saumitra Sen Singh
  • Hagera Dilnashin
  • Aaina Singh Rathore
  • Surya Pratap Singh


The main challenge in today’s world to the healthcare system is the elevated occurrence of the neurodegenerative disorders. Progress in the field of bioinformatics and biomedical research has allowed us to understand the pathobiology of the neurodegenerative disorders in a detailed manner. The threat of these diseases increases with aging, and Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and Huntington’s disease are the major ones affecting the public health and posing the higher economic burden. The research centers, pharmaceutical companies, and academic institutions are conducting research work in collaborations these days to enhance the development of new therapeutic strategies and develop novel drugs in a sustainable way. This can help in the development of safer therapies with reduced risk and can help in developing the authentic and evident biomarkers so that the disease can be diagnosed at early stages and treated accordingly. The advancement can therefore help in improving the quality of life of patients suffering from these debilitating neurodegenerative disorders and can also help in providing the job opportunities to the students interested in drug development program.


Neurodegenerative disorders Parkinson’s disease Alzheimer’s disease Amyotrophic lateral sclerosis Huntington’s disease Drug development Novel therapeutics 


  1. Agnati LF, Zoli M, Biagini G, Fuxe K (1992) Neuronal plasticity and ageing processes in the frame of the ‘red queen theory’. Acta Physiol Scand 145(4):301–309CrossRefGoogle Scholar
  2. Aisen PS, Cummings J, Jack CR, Morris JC, Sperling R, Frölich L, Jones RW, Dowsett SA, Matthews BR, Raskin J, Scheltens P (2017) On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res Ther 9(1):60CrossRefGoogle Scholar
  3. ALS Association (2015) Available on URL: Accessed 06/03/2019
  4. Alzheimer’s Association (2018) Alzheimer’s disease facts and figures. Alzheimers Dement 14(3):367–429CrossRefGoogle Scholar
  5. Bano D, Zanetti F, Mende Y, Nicotera P (2011) Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2(11):e228CrossRefGoogle Scholar
  6. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389–1392CrossRefGoogle Scholar
  7. Borras-Blasco J, Plaza-Macías I, Navarro-Ruiz A, Peris-Marti J, Anton-Cano A (1998) Riluzole as a treatment for amyotrophic lateral sclerosis. Rev Neurol (160):1021–1027Google Scholar
  8. Brodaty H, Heffernan M, Kochan NA, Draper B, Trollor JN, Reppermund S, Slavin MJ, Sachdev PS (2013) Mild cognitive impairment in a community sample: the Sydney memory and ageing study. Alzheimer’s Dement. 1 9(3):310–317CrossRefGoogle Scholar
  9. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement. 1 3(3):186–191CrossRefGoogle Scholar
  10. Carter AJ, Donner A, Lee WH, Bountra C (2017) Establishing a reliable framework for harnessing the creative power of the scientific crowd. PLoS Biol 15(2):e2001387CrossRefGoogle Scholar
  11. Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6(4):37CrossRefGoogle Scholar
  12. Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K (2017) Alzheimer’s disease drug development pipeline: 2017. Alzheimer’s Dement: Transl Res Clin Interv 3(3):367–384Google Scholar
  13. Cummings J, Reiber C, Kumar P (2018) The price of progress: funding and financing Alzheimer’s disease drug development. Alzheimer’s Dement: Trans Res Clin Interv 4:330–343Google Scholar
  14. Deb A, Thornton JD, Sambamoorthi U, Innes K (2017) Direct and indirect cost of managing alzheimer’s disease and related dementias in the United States. Expert Rev Pharmacoecon Outcomes Res 17(2):189–202CrossRefGoogle Scholar
  15. Deflorio C, Onesti E, Lauro C, Tartaglia G, Giovannelli A, Limatola C, Inghilleri M, Grassi F (2014) Partial block by riluzole of muscle sodium channels in myotubes from amyotrophic lateral sclerosis patients. Neurol Res Int 2014:946073CrossRefGoogle Scholar
  16. Delamarre A, Meissner WG (2017) Epidemiology, environmental risk factors and genetics of Parkinson’s disease. La Presse Med 46(2):175–181CrossRefGoogle Scholar
  17. Deng Y, Xu Z, Xu B, Tian Y, Xin X, Deng X, Gao J (2009) The protective effect of riluzole on manganese caused disruption of glutamate–glutamine cycle in rats. Brain Res 1289:106–117CrossRefGoogle Scholar
  18. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 1(47):20–33CrossRefGoogle Scholar
  19. Domingo A, Klein C (2018) Genetics of Parkinson disease. Handb Clin Neurol 147:211–227 ElsevierGoogle Scholar
  20. Dragojlovic N, Lynd LD (2014) Crowdfunding drug development: the state of play in oncology and rare diseases. Drug Discov Today 19(11):1775–1780CrossRefGoogle Scholar
  21. Durães F, Pinto M, Sousa E (2018) Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals 11(2):44CrossRefGoogle Scholar
  22. Fleming JJ (2015) The decline of venture capital investment in early-stage life sciences poses a challenge to continued innovation. Health Aff 34(2):271–276CrossRefGoogle Scholar
  23. Gammon K (2014) Neurodegenerative disease: brain windfall. Nature 515(7526):299–300CrossRefGoogle Scholar
  24. Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 10:499–502CrossRefGoogle Scholar
  25. Gordon PH (2013) Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology, management and therapeutic trials. Aging Dis 4(5):295CrossRefGoogle Scholar
  26. Gordon PH, Cheng B, Katz IB, Pinto M, Hays AP, Mitsumoto H, Rowland LP (2006) The natural history of primary lateral sclerosis. Neurology 66(5):647–653CrossRefGoogle Scholar
  27. Greenhalgh T, Ovseiko PV, Fahy N, Shaw S, Kerr P, Rushforth AD, Channon KM, Kiparoglou V (2017) Maximising value from a United Kingdom biomedical research Centre: study protocol. Health Res Policy Syst 15(1):70CrossRefGoogle Scholar
  28. Harris BT (2014) Amyotrophic lateral sclerosis. In: Pathobiology of human disease: a dynamic encyclopedia of disease mechanisms. Elsevier, WalthamCrossRefGoogle Scholar
  29. Heinrich M (2010) Galanthamine from Galanthus and other Amaryllidaceae–chemistry and biology based on traditional use. Alkaloids Chem Biol 68:157–165. Academic PressCrossRefGoogle Scholar
  30. Hurtado-Puerto AM, Russo C, Fregni F (2018) Alzheimer’s disease. In: Neuromethods. Humana Press, New YorkGoogle Scholar
  31. Hwang JY, Aromolaran KA, Zukin RS (2017) The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 18(6):347CrossRefGoogle Scholar
  32. Keswani C, Bisen K, Singh SP, Singh HB (2017) Traditional knowledge and medicinal plants of India in intellectual property landscape. Med Plants 9(1):1–11Google Scholar
  33. Kumar A, Singh A (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203CrossRefGoogle Scholar
  34. Lawrence S (2017) Biotech's wellspring—a survey of the health of the private sector in 2016. Nat Biotechnol 35(5):413CrossRefGoogle Scholar
  35. Lin JY, Xie CL, Zhang SF, Yuan W, Liu ZG (2017) Current experimental studies of gene therapy in Parkinson’s disease. Front Aging Neurosci 9:126CrossRefGoogle Scholar
  36. Lo AW, Ho C, Cummings J, Kosik KS (2014) Parallel discovery of Alzheimer’s therapeutics. Sci Transl Med 6(241):241cm5CrossRefGoogle Scholar
  37. Logroscino G, Traynor BJ, Hardiman O, Couratier P, Mitchell JD, Swingler RJ, Beghi E (2008) Descriptive epidemiology of amyotrophic lateral sclerosis: new evidence and unsolved issues. J Neurol Neurosurg Psychiatry 79(1):6–11CrossRefGoogle Scholar
  38. Lu H, Le WD, Xie YY, Wang XP (2016) Current therapy of drugs in amyotrophic lateral sclerosis. Curr Neuropharmacol 14(4):314–321CrossRefGoogle Scholar
  39. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N, MacFarlane H (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983CrossRefGoogle Scholar
  40. Martorell P, Hurd MD, Delavande A, Mullen KJ, Langa KM (2013) Monetary costs of dementia in the United States. N Engl J Med 368(14):1326–1334CrossRefGoogle Scholar
  41. Matyus P, Dunkel P, Chai CL, Sperlagh B, Huleatt PB (2012) Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs 21(9):1267–1308CrossRefGoogle Scholar
  42. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34CrossRefGoogle Scholar
  43. Mucke HA (2015) The case of galantamine: repurposing and late blooming of a cholinergic drug. Future Sci OA 1(4):FSO73CrossRefGoogle Scholar
  44. Mulder DW, Kurland LT, Offord KP, Beard CM (1986) Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36(4):511–517CrossRefGoogle Scholar
  45. Muller S, Weigelt J (2010) Open-access public-private partnerships to enable drug discovery – new approaches. IDrugs: Invest Drugs J 13(3):175–180Google Scholar
  46. Murphy DG, Goldman M, Loth E, Spooren W (2014) Public-private partnership: a new engine for translational research in neurosciences. Neuron 84(3):533–536CrossRefGoogle Scholar
  47. Neymotin A, Petri S, Calingasan NY, Wille E, Schafer P, Stewart C, Hensley K, Beal MF, Kiaei M (2009) Lenalidomide (Revlimid®) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 220(1):191–197CrossRefGoogle Scholar
  48. Nguyen HHP, Weydt P (2018) Huntington disease. Med Genet 30(2):246–251Google Scholar
  49. Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X (2013) Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 70(24):4729–4745CrossRefGoogle Scholar
  50. Parayath NN, Pawar G, Avachat C, Miyake MM, Bleier B, Amiji MM (2017) Neurodegenerative disease. In: Nanomedicine for inflammatory diseases. CRC Press, Boca Raton/London, pp 289–318CrossRefGoogle Scholar
  51. Parkinson’s Institute and Clinical Center (2017) Available on URL: Accessed 05/03/2019
  52. Parkinson’s Institute and Clinical Center (2018) Available on URL: Accessed 05/03/2019
  53. Payami H (2017) The emerging science of precision medicine and pharmacogenomics for Parkinson’s disease. Mov Disord 32(8):1139–1146CrossRefGoogle Scholar
  54. Perry JJ, Pratt AJ, Getzoff ED (2012) Amyotrophic lateral sclerosis: update and new developments. Degenerative Neurol Neuromuscul Dis 2012(2):1Google Scholar
  55. Portilla L, L Rohrbaugh M (2014) Leveraging public private partnerships to innovate under challenging budget times. Curr Top Med Chem 14(3):326–329CrossRefGoogle Scholar
  56. Prince M, Comas-Herrera A, Knapp M, et al (2016) World Alzheimer report 2016. In:
  57. Ramsey BW, Nepom GT, Lonial S (2017) Academic, foundation, and industry collaboration in finding new therapies. N Engl J Med 376(18):1762–1769CrossRefGoogle Scholar
  58. Reiman EM, Langbaum J, Fleisher AS, Caselli RJ, Chen K, Ayutyanont N, Quiroz YT, Kosik KS, Lopera F, Tariot PN (2011) Alzheimer’s prevention initiative: a plan to accelerate the evaluation of presymptomatic treatments. J Alzheimers Dis 26(s3):321–329CrossRefGoogle Scholar
  59. Roberts R, Knopman DS (2013) Classification and epidemiology of MCI. Clin Geriatr Med 29(4):753–772CrossRefGoogle Scholar
  60. Rowland LP (2001) How amyotrophic lateral sclerosis got its name: the clinical-pathologic genius of Jean-Martin Charcot. Arch Neurol 58(3):512–515CrossRefGoogle Scholar
  61. Schumacher-Schuh AF, Rieder CR, Hutz MH (2014) Parkinson’s disease pharmacogenomics: new findings and perspectives. Pharmacogenomics 15(9):1253–1271CrossRefGoogle Scholar
  62. Scott TJ, O’connor AC, Link AN, Beaulieu TJ (2014) Economic analysis of opportunities to accelerate Alzheimer’s disease research and development. Ann N Y Acad Sci 1313(1):17–34CrossRefGoogle Scholar
  63. Sidders B, Brockel C, Gutteridge A, Harland L, Jansen PG, McEwen R, Michalovich D, Seidel H, Weiss B, Williams-Jones B, Woodwark M (2014) Precompetitive activity to address the biological data needs of drug discovery. Nat Rev Drug Discov 13(2):83CrossRefGoogle Scholar
  64. Singh HB, Jha A, Keswani C (eds) (2016a) Intellectual property issues in biotechnology. CABI, Wallingford. 304 pages, ISBN-13: 9781780646534Google Scholar
  65. Singh HB, Jha A, Keswani C (2016b) Biotechnology in agriculture, medicine and industry: an overview. In: Singh HB, Jha A, Keswani C (eds) Intellectual property issues in biotechnology. CABI, Wallingford, pp 1–4CrossRefGoogle Scholar
  66. The Michael J. Fox Foundation for Parkinson’s disease (2019) Available from URL: Accessed 06/03/2019
  67. von Campenhausen S, Winter Y, e Silva AR, Sampaio C, Ruzicka E, Barone P, Poewe W, Guekht A, Mateus C, Pfeiffer KP, Berger K (2011) Costs of illness and care in Parkinson’s disease: an evaluation in six countries. Eur Neuropsychopharmacol 21(2):180–191CrossRefGoogle Scholar
  68. Vradenburg G (2015) A pivotal moment in Alzheimer’s disease and dementia: how global unity of purpose and action can beat the disease by 2025. Expert Rev Neurother 15(1):73–82CrossRefGoogle Scholar
  69. Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease—insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 13(10):612CrossRefGoogle Scholar
  70. Widdus R (2005) Public-private partnerships: an overview. Trans R Soc Trop Med Hyg 99(Supplement_1):S1–S8CrossRefGoogle Scholar
  71. Yacoubian TA (2017) Drug discovery approaches for the treatment of neurodegenerative disorders. Academic Press/Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Walia Zahra
    • 1
  • Sachchida Nand Rai
    • 1
  • Hareram Birla
    • 1
  • Saumitra Sen Singh
    • 1
  • Hagera Dilnashin
    • 1
  • Aaina Singh Rathore
    • 1
  • Surya Pratap Singh
    • 1
  1. 1.Department of Biochemistry, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations