Skip to main content

Hyperbaric Oxygen Therapy in the Management of Severe Soft Tissue Injuries

  • Chapter
  • First Online:
Hyperbaric Oxygenation Therapy

Abstract

Crush injuries are still challenging injuries to treat, despite improvements in therapeutic strategies and procedures. The pathophysiology of crush injuries has two important clinical aspects: problem wound and infection. Based on previous studies and practices, hyperbaric oxygen therapy (HBO2 therapy) has been used for both problem wounds and infectious diseases, so the use of HBO2 therapy for crush injuries should be considered as a therapeutic option.

In this chapter, we first introduce the wound healing process and the role of oxygen. Second, we discuss the pathophysiology of crush injuries and the relationship between HBO2 therapy and crush injuries. In addition, we discuss clinical settings and review the previous clinical experience in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

References

  1. Jones SR, Carpin KM, Woodward SM, Khiabani KT, Stephenson LL, Wang WZ, et al. Hyperbaric oxygen inhibits ischemia-reperfusion-induced neutrophil CD18 polarization by a nitric oxide mechanism. Plast Reconstr Surg. 2010;126:403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24:742–6.

    Article  CAS  PubMed  Google Scholar 

  3. Schenker ML, Ahn J, Donegan D, Mehta S, Baldwin KD. The cost of after-hours operative debridement of open tibia fractures. J Orthop Trauma. 2014;28:626–31.

    Article  PubMed  Google Scholar 

  4. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.

    Article  CAS  PubMed  Google Scholar 

  5. Schafer M, Werner S. Transcriptional control of wound repair. Annu Rev Cell Dev Biol. 2007;23:69–92.

    Article  CAS  PubMed  Google Scholar 

  6. Hunt TK, Niinikoski J, Zederfeldt B. Role of oxygen in repair processes. Acta Chir Scand. 1972;138:109–10.

    CAS  PubMed  Google Scholar 

  7. Hopf HW, Humphrey LM, Puzziferri N, West JM, Attinger CE, Hunt TK. Adjuncts to preparing wounds for closure: hyperbaric oxygen, growth factors, skin substitutes, negative pressure wound therapy (vacuum-assisted closure). Foot Ankle Clin. 2001;6:661–82.

    Article  CAS  PubMed  Google Scholar 

  8. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89–96.

    Article  PubMed  Google Scholar 

  9. Cho M, Hunt TK, Hussain MZ. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol. 2001;280:H2357–63.

    Article  CAS  PubMed  Google Scholar 

  10. Hopf HW, Viele M, Watson JJ, Feiner J, Weiskopf R, Hunt TK, et al. Subcutaneous perfusion and oxygen during acute severe isovolemic hemodilution in healthy volunteers. Arch Surg. 2000;135:1443–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sheffield PJ. Tissue oxygen measurements. In: Davis J, Hant TK, editors. Problem wounds: the role of oxygen. New York: Elsevier; 1988. p. 17–52.

    Google Scholar 

  12. Tibbles PM, Edelsberg JS. Hyperbaric-oxygen therapy. N Engl J Med. 1996;334:1642–8.

    Article  CAS  PubMed  Google Scholar 

  13. Broussard CL. Hyperbaric oxygenation and wound healing. J Vasc Nurs. 2004;22:42–8.

    Article  PubMed  Google Scholar 

  14. Bird AD, Telfer AB. Effect of Hyperbaric Oxygen on Limb Circulation. Lancet. 1965;1:355–6.

    Article  CAS  PubMed  Google Scholar 

  15. Allen DB, Maguire JJ, Mahdavian M, Wicke C, Marcocci L, Scheuenstuhl H, et al. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg. 1997;132:991–6.

    Article  CAS  PubMed  Google Scholar 

  16. Verklin RM Jr, Mandell GL. Alteration of effectiveness of antibiotics by anaerobiosis. J Lab Clin Med. 1977;89:65–71.

    CAS  PubMed  Google Scholar 

  17. Mendel V, Reichert B, Simanowski HJ, Scholz HC. Therapy with hyperbaric oxygen and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats. Undersea Hyperb Med. 1999;26:169–74.

    CAS  PubMed  Google Scholar 

  18. Almzaiel AJ, Billington R, Smerdon G, Moody AJ. Effects of hyperbaric oxygen treatment on antimicrobial function and apoptosis of differentiated HL-60 (neutrophil-like) cells. Life Sci. 2013;93:125–31.

    Article  CAS  PubMed  Google Scholar 

  19. Johnsson AA, Sawaii T, Jacobsson M, Granstrom G, Turesson I. A histomorphometric study of bone reactions to titanium implants in irradiated bone and the effect of hyperbaric oxygen treatment. Int J Oral Maxillofac Implants. 1999;14:699–706.

    CAS  PubMed  Google Scholar 

  20. Kawada S, Wada E, Matsuda R, Ishii N. Hyperbaric hyperoxia accelerates fracture healing in mice. PLoS One. 2013;8:e72603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sever C, Uygur F, Kulahci Y, Torun Kose G, Urhan M, Kucukodaci Z, et al. Effect of hyperbaric oxygen therapy on bone prefabrication in rats. Acta Orthop Traumatol Turc. 2010;44:403–9.

    Article  PubMed  Google Scholar 

  22. Fildissis G, Venetsanou K, Myrianthefs P, Karatzas S, Zidianakis V, Baltopoulos G. Whole blood pro-inflammatory cytokines and adhesion molecules post-lipopolysaccharides exposure in hyperbaric conditions. Eur Cytokine Netw. 2004;15:217–21.

    CAS  PubMed  Google Scholar 

  23. Chen SJ, Yu CT, Cheng YL, Yu SY, Lo HC. Effects of hyperbaric oxygen therapy on circulating interleukin-8, nitric oxide, and insulin-like growth factors in patients with type 2 diabetes mellitus. Clin Biochem. 2007;40:30–6.

    Article  PubMed  Google Scholar 

  24. Sheikh AY, Gibson JJ, Rollins MD, Hopf HW, Hussain Z, Hunt TK. Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg. 2000;135:1293–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kang TS, Gorti GK, Quan SY, Ho M, Koch RJ. Effect of hyperbaric oxygen on the growth factor profile of fibroblasts. Arch Facial Plast Surg. 2004;6:31–5.

    Article  PubMed  Google Scholar 

  26. Lin S, Shyu KG, Lee CC, Wang BW, Chang CC, Liu YC, et al. Hyperbaric oxygen selectively induces angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2002;296:710–5.

    Article  CAS  PubMed  Google Scholar 

  27. Bonomo SR, Davidson JD, Yu Y, Xia Y, Lin X, Mustoe TA. Hyperbaric oxygen as a signal transducer: upregulation of platelet derived growth factor-beta receptor in the presence of HBO2 and PDGF. Undersea Hyperb Med. 1998;25:211–6.

    CAS  PubMed  Google Scholar 

  28. Niinikoski J, Penttinen R, Kulonen E. Effect of hyperbaric oxygenation on fracture healing in the rat: a biochemical study. Calcif Tissue Res. 1970;Suppl:115–6.

    Article  Google Scholar 

  29. Stephens FO, Hunt TK. Effect of changes in inspired oxygen and carbon dioxide tensions on wound tensile strength: an experimental study. Ann Surg. 1971;173:515–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hunt TK, Pai MP. The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet. 1972;135:561–7.

    CAS  PubMed  Google Scholar 

  31. Asmis R, Qiao M, Zhao Q. Low flow oxygenation of full-excisional skin wounds on diabetic mice improves wound healing by accelerating wound closure and reepithelialization. Int Wound J. 2010;7:349–57.

    Article  PubMed  Google Scholar 

  32. Hopf HW, Gibson JJ, Angeles AP, Constant JS, Feng JJ, Rollins MD, et al. Hyperoxia and angiogenesis. Wound Repair Regen. 2005;13:558–64.

    Article  PubMed  Google Scholar 

  33. Williams RL. Hyperbaric oxygen therapy and the diabetic foot. J Am Podiatr Med Assoc. 1997;87:279–92.

    Article  CAS  PubMed  Google Scholar 

  34. Potter CF, Kuo NT, Farver CF, McMahon JT, Chang CH, Agani FH, et al. Effects of hyperoxia on nitric oxide synthase expression, nitric oxide activity, and lung injury in rat pups. Pediatr Res. 1999;45:8–13.

    Article  CAS  PubMed  Google Scholar 

  35. Kendall AC, Whatmore JL, Harries LW, Winyard PG, Smerdon GR, Eggleton P. Changes in inflammatory gene expression induced by hyperbaric oxygen treatment in human endothelial cells under chronic wound conditions. Exp Cell Res. 2012;318:207–16.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Q, Chang Q, Cox RA, Gong X, Gould LJ. Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. J Invest Dermatol. 2008;128:2102–12.

    Article  CAS  PubMed  Google Scholar 

  37. Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C. Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones. 2010;15:431–42.

    Article  CAS  PubMed  Google Scholar 

  38. Thom SR. Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg. 2011;127. Suppl 1:131S–41S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gottrup F. Oxygen, wound healing and the development of infection. Present status. Eur J Surg. 2002;168:260–3.

    Article  PubMed  Google Scholar 

  40. Hopf HW, Ueno C, Aslam R, Burnand K, Fife C, Grant L, et al. Guidelines for the treatment of arterial insufficiency ulcers. Wound Repair Regen. 2006;14:693–710.

    Article  PubMed  Google Scholar 

  41. Inoue O, Kukita I, Koshi K, Yamami N, Suzuki K. Committee report; review for re-organization about indication of hyperbaric oxygen therapy-suggetion according to domestic clinical report and basic study, International RCT Study. http://www.jshm.net/shiryou/pdf/shiryou001_1.pdf

  42. Strauss MB. Why hyperbaric oxygen therapy may be useful in treating crush injuries and skeletal muscle-compartment syndrome. Undersea Hyperb Med. 2012;39:799–800.

    PubMed  Google Scholar 

  43. Garcia-Covarrubias L, McSwain NE Jr, Van Meter K, Bell RM. Adjuvant hyperbaric oxygen therapy in the management of crush injury and traumatic ischemia: an evidence-based approach. Am Surg. 2005;71:144–51.

    PubMed  Google Scholar 

  44. Strauss MB, Garcia-Covarrubias L. Crush injuries Justification and indications for hyperbaric oxygen therapy. In: Neuman TN, Thom SR, editors. Physiology and medicine of Hyperbaric oxygen therapy. Philadelphia: Saunders/Elsevier; 2008. p. 442.

    Google Scholar 

  45. Szekely O, Szanto G, Takats A. Hyperbaric oxygen therapy in injured subjects. Injury. 1973;4:294–300.

    Article  CAS  PubMed  Google Scholar 

  46. Monies-Chass I, Hashmonai M, Hoere D, Kaufman T, Steiner E, Schramek A. Hyperbaric oxygen treatment as an adjuvant to reconstructive vascular surgery in trauma. Injury. 1977;8:274–7.

    Article  CAS  PubMed  Google Scholar 

  47. Shupak A, Gozal D, Ariel A, et al. Hyperbaric oxygenation in acute peripheral posttraumatic ischemia. J Hyperb Med. 1987;2:7–14.

    Google Scholar 

  48. Radonic V, Baric D, Petricevic A, Kovacevic H, Sapunar D, Glavina-Durdov M. War injuries of the crural arteries. Br J Surg. 1995;82:777–83.

    Article  CAS  PubMed  Google Scholar 

  49. Bouachour G, Cronier P, Gouello JP, Toulemonde JL, Talha A, Alquier P. Hyperbaric oxygen therapy in the management of crush injuries: a randomized double-blind placebo-controlled clinical trial. J Trauma. 1996;41:333–9.

    Article  CAS  PubMed  Google Scholar 

  50. Matos LA, Hutson JJ, Bonet H, et al. HBO as an adjuvant treatment limb salvage in crush injuries of the extremitis. Undersea Hyperb Med. 1999;26:66–7.

    Google Scholar 

  51. Roje Z, Roje Z, Eterovic D, Druzijanic N, Petricevic A, Roje T, et al. Influence of adjuvant hyperbaric oxygen therapy on short-term complications during surgical reconstruction of upper and lower extremity war injuries: retrospective cohort study. Croat Med J. 2008;49:224–32.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Takao K, Kawashima M, Tamura H, et al. Hyperbaric oxygen application therapy for crush injury. Kyushu Kokiatsu Kankyoigakukaishi. 2009;9:10–4.

    Google Scholar 

  53. Yamada N, Toyoda I, Doi T, Kumada K, Kato H, Yoshida S, et al. Hyperbaric oxygenation therapy for crush injuries reduces the risk of complications: research report. Undersea Hyperb Med. 2014;41:283–9.

    PubMed  Google Scholar 

  54. Eskes A, Vermeulen H, Lucas C, Ubbink DT. Hyperbaric oxygen therapy for treating acute surgical and traumatic wounds. Cochrane Database Syst Rev. 2013;CD008059.

    Google Scholar 

  55. Millar IL, McGinnes RA, Williamson O, Lind F, Jansson KA, Hajek M, et al. Hyperbaric Oxygen in Lower Limb Trauma (HOLLT); protocol for a randomised controlled trial. BMJ Open. 2015;5:e008381.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Strauss MB. Crush injuries and skeletal muscle-compartment syndrome. In: Weaver L, editor. Hyperbaric oxygen therapy indications. 13th ed. North Palm Beach, FL: Best Publishing; 2014. p. 91–103.

    Google Scholar 

Download references

Acknowledgments

The main author N.Y. wrote this manuscript during a research program in the UK. We appreciate the support provided by Professor Christoph Thiemermann and his team at the Centre for Translational Medicine and Therapeutics, the William Harvey Research Institute, Queen Mary University of London. I also thank Ms. Nurini and Mr. Cesare Colloura for making the best environment in the UK.

Author contributions:

N. Y.: Writing the main text, reviewing previous studies

I. T.: Reviewing previous studies and supervising

S. O.: Reviewing previous studies and supervising

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamada, N., Toyoda, I., Ogura, S. (2020). Hyperbaric Oxygen Therapy in the Management of Severe Soft Tissue Injuries. In: Shinomiya, N., Asai, Y. (eds) Hyperbaric Oxygenation Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-13-7836-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7836-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7835-5

  • Online ISBN: 978-981-13-7836-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics