Advertisement

Structure and Properties of Combined Multilayer Coatings Based on Alternative Triple Nitride and Binary Metallic Layers

  • O. V. BondarEmail author
  • Alexander D. Pogrebnjak
  • Y. Takeda
  • B. Postolnyi
  • P. Zukowski
  • R. Sakenova
  • V. Beresnev
  • V. Stolbovoy
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Combined multilayered coatings based on alternative triple nitride and binary metallic layers were deposited using vacuum-arc evaporation of a cathode. (TiMo)N/TiMo, (CrMo)N/CrMo, (CrZr)N/CrZr, (TiCr)N/TiCr and (MoZr)N/MoZr multilayer coatings were fabricated under the same deposition conditions, while bias potential was −200 V. Total thickness of the coatings was around 54 μm, while bilayer thickness was around 900 nm and we had 60 bilayers in each coating. Thicknesses of triple nitride and binary metallic layers were 750 and 150 nm respectively. Various methods of analysis were used for coatings characterization, including, but not limited to, XRD, SEM, EDS, TEM, HR-TEM, SIMS, as well as indentation tests. Forming of two-phase state with (111) and (200) preferable orientation was found in the coatings. Vickers hardness HV0.1, HV0.5 and HV1 of the coatings varied from 2347 to 2912, 2077 to 2584 and from 1369 to 2327 respectively, which makes them perspective for application as hard protective coatings.

Keywords

Multilayered coatings Nitrides Hardness Mechanical properties 

Notes

Acknowledgements

This work was done under the aegis of Ukrainian state budget programs No. 0116U006816 “Development of perspective nanostructured multilayered coatings with enhanced physical-mechanical and tribological properties”, 0118U003579 “Multilayer and multicomponent coatings with adaptive behavior in wear and friction conditions” and 0116U002621 “Physical basics of forming the composition and properties of transition metals boride, nitride and boride-nitride films for application in machine-building”, as well as by Science and Technology Center in Ukraine (STCU) program entitled “A first-principle approach for the design of new superhard nanocomposite coatings” (Project No 6372-C).

References

  1. 1.
    Musil J (2000) Hard and superhard nanocomposite coatings. Surf Coatings Technol 125(1–3):322–330.  https://doi.org/10.1016/S0257-8972(99)00586-1Google Scholar
  2. 2.
    Musil J (2007) Properties of hard nanocomposite thin films. In: Nanocomposite thin films and coatings (Published by Imperial College Press and Distributed by World Scientific Publishing Co.), pp 281–328.  https://doi.org/10.1142/9781860949975_0005Google Scholar
  3. 3.
    Hao S, Delley B, Veprek S et al (2006) Superhard nitride-based nanocomposites: role of interfaces and effect of impurities. Phys Rev Lett 97(8):086102.  https://doi.org/10.1103/PhysRevLett.97.086102
  4. 4.
    Veprek S, Veprek-Heijman MGJ, Karvankova P et al (2005) Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1):1–29.  https://doi.org/10.1016/j.tsf.2004.10.053Google Scholar
  5. 5.
    Pogrebnjak AD (2013) Structure and properties of nanostructured (Ti–Hf–Zr–V–Nb)N Coatings. J Nanomater 1–12.  https://doi.org/10.1155/2013/780125Google Scholar
  6. 6.
    Pogrebnjak AD, Kravchenko YO, Bondar OV et al (2018) Structural features and tribological properties of multilayer coatings based on refractory metals. Prot Met Phys Chem Surfaces 54(2):240–258.  https://doi.org/10.1134/S2070205118020107Google Scholar
  7. 7.
    Pogrebnjak AD, Shpak AP, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys.-Uspekhi 52(1):29–54.  https://doi.org/10.3367/UFNe.0179.200901b.0035Google Scholar
  8. 8.
    Pogrebnyak AD, Tyurin YN (2005) Modification of material properties and coating deposition using plasma jets. Phys.-Uspekhi 48(5):487–514.  https://doi.org/10.1070/PU2005v048n05ABEH002055Google Scholar
  9. 9.
    Pogrebnjak AD, Ponomarev AG, Shpak AP et al (2012) Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects. Phys.-Uspekhi 55(3):270–300.  https://doi.org/10.3367/UFNe.0182.201203d.0287Google Scholar
  10. 10.
    Sangiovanni DG, Hultman L, Chirita V et al (2016) Effects of phase stability, lattice ordering, and electron density on plastic deformation in cubic TiWN pseudobinary transition-metal nitride alloys. Acta Mater 103:823–835.  https://doi.org/10.1016/j.actamat.2015.10.039Google Scholar
  11. 11.
    Cavaleiro AJ, Ramos AS, Martins RMS et al (2017) The effect of heating rate on the phase transformation of Ni/Ti multilayer thin films. Vacuum 139:23–25. https://doi.org/10.1016/j.vacuum.2017.02.004Google Scholar
  12. 12.
    Lee DB, Kim MH, Lee YC et al (2001) High temperature oxidation of a CrN coating deposited on a steel substrate by ion plating. Surf Coatings Technol 141(2–3):227–231.  https://doi.org/10.1016/S0257-8972(01)01238-5Google Scholar
  13. 13.
    Luridiana S, Miotello A (1996) Spectrophotometric study of oxide growth on arc evaporated TiN and ZrN coatings during hot air oxidation tests. Thin Solid Films 290–291:289–293.  https://doi.org/10.1016/S0040-6090(99)80009-1Google Scholar
  14. 14.
    Mei AB, Howe BM, Zhang C et al (2013) Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering. J Vac Sci Technol A Vacuum, Surfaces, Film 31(6):061516.  https://doi.org/10.1116/1.4825349Google Scholar
  15. 15.
    Pogrebnjak AD, Bor’ba SO, Kravchenko YO et al (2016) Effect of the high doze of N+(1018 cm–2) ions implantation into the (TiHfZrVNbTa)N nanostructured coating on its microstructure, elemental and phase compositions, and physico-mechanical properties. J Superhard Mater 38(6):393–401.  https://doi.org/10.3103/S1063457616060034Google Scholar
  16. 16.
    Berladir KV, Budnik OA, Dyadyura KA et al (2016) Physicochemical principles of the technology of formation of polymer composite materials based on polytetrafluoroethylene—a Review. High Temp Mater Process 20(2):157–184.  https://doi.org/10.1615/HighTempMatProc.2016017875Google Scholar
  17. 17.
    Pogrebnjak AD, Lebed AG, Ivanov YF (2001) Modification of single crystal stainless steel structure (Fe-Cr-Ni-Mn) by high-power ion beam. Vacuum 483–486.  https://doi.org/10.1016/S0042-207X(01)00225-1Google Scholar
  18. 18.
    Kasiuk JV, Fedotova JA, Koltunowicz TN et al (2014) Correlation between local Fe states and magnetoresistivity in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix. J Alloys Compd 586(Suppl 1):S432–S435. https://doi.org/10.1016/j.jallcom.2012.09.058Google Scholar
  19. 19.
    Boiko O, Koltunowicz TN, Zukowski P et al (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy – ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100−x). Ceram Int 43(2):2511–2516.  https://doi.org/10.1016/j.ceramint.2016.11.052Google Scholar
  20. 20.
    Ivashchenko VI, Veprek S, Argon AS et al (2015) First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNxheterostructures, and the achievable hardness of the nc-TiN/SiNxnanocomposites. Thin Solid Films 578:83–92.  https://doi.org/10.1016/j.tsf.2015.02.013Google Scholar
  21. 21.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2012) First-principles study of TiN/SiC/TiN interfaces in superhard nanocomposites. Phys Rev B—Condens Matter Mater Phys 86(1):014110. https://doi.org/10.1103/PhysRevB.86.014110
  22. 22.
    Maksakova O, Simoẽs S, Pogrebnjak A et al (2018) The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings. Mater Charact 140:189–196.  https://doi.org/10.1016/j.matchar.2018.03.048Google Scholar
  23. 23.
    Pogrebnjak AD, Beresnev VM, Bondar OV et al (2018) Superhard CrN/MoN coatings with multilayer architecture. Mater Des 153:47–59.  https://doi.org/10.1016/j.matdes.2018.05.001Google Scholar
  24. 24.
    Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL et al (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: Temperature effects on the nanocomposite structure. Compos Part B Eng 142:85–94.  https://doi.org/10.1016/j.compositesb.2018.01.004Google Scholar
  25. 25.
    Pogrebnjak A, Ivashchenko V, Bondar O et al (2017) Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations. Mater Charact 134:55–63. https://doi.org/10.1016/j.matchar.2017.10.016Google Scholar
  26. 26.
    Pogrebnjak AD, Bondar OV, Erdybaeva NK et al (2015) Influence of thermal annealing and deposition conditions on structure and physical-mechanical properties of multilayered nanosized TiN/ZrN coatings. Prz Elektrotechniczny 1(12):228–232. https://doi.org/10.15199/48.2015.12.59
  27. 27.
    Bondar OV, Postol’nyi BA, Beresnev VM et al (2015) Composition, structure and tribotechnical properties of TiN, MoN single-layer and TiN/MoN multilayer coatings. J Superhard Mater 37(1):27–38.  https://doi.org/10.3103/S1063457615010050Google Scholar
  28. 28.
    Yang S, Yan X, Yang K et al (2016) Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131:69–72.  https://doi.org/10.1016/j.vacuum.2016.05.019Google Scholar
  29. 29.
    Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a review. Prot Met Phys Chem Surfaces 52(5):802–813.  https://doi.org/10.1134/S2070205116050191Google Scholar
  30. 30.
    Pogrebnjak AD, Beresnev VM, Kolesnikov DA et al (2013) Multicomponent (Ti-Zr-Hf-V-Nb)N nanostructure coatings fabrication, high hardness and wear resistance. Acta Phys Pol A 123(5):816–818.  https://doi.org/10.12693/APhysPolA.123.816Google Scholar
  31. 31.
    Ming J, Li M, Kumar P et al (2016) Multilayer approach for advanced hybrid lithium battery. ACS Nano 10(6):6037–6044.  https://doi.org/10.1021/acsnano.6b01626Google Scholar
  32. 32.
    Wedig A, Luebben M, Cho D-Y et al (2015) Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nat Nanotechnol 11(1):67–74.  https://doi.org/10.1038/nnano.2015.221Google Scholar
  33. 33.
    Ishida H, Campbell S, Blackwell J (2000) General approach to nanocomposite preparation. Chem Mater 12(5):1260–1267.  https://doi.org/10.1021/cm990479yGoogle Scholar
  34. 34.
    Söderberg H, Odén M, Larsson T et al (2006) Epitaxial stabilization of cubic-SiN[sub x] in TiN∕SiN[sub x] multilayers. Appl Phys Lett 88(19):191902.  https://doi.org/10.1063/1.2202145Google Scholar
  35. 35.
    Hultman L, Bareño J, Flink A et al (2007) Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: film growth experiments and ab initio calculations. Phys Rev B 75(15):155437.  https://doi.org/10.1103/PhysRevB.75.155437
  36. 36.
    Fallqvist A, Ghafoor N, Fager H et al (2013) Self-organization during growth of ZrN/SiNx multilayers by epitaxial lateral overgrowth. J Appl Phys 114(22):224302.  https://doi.org/10.1063/1.4838495Google Scholar
  37. 37.
    Setoyama M, Nakayama A, Tanaka M et al (1996) Formation of cubic-AlN in TiN/AlN superlattice. Surf Coatings Technol 86–87(PART 1):225–230.  https://doi.org/10.1016/S0257-8972(96)03033-2Google Scholar
  38. 38.
    Ghafoor N, Lind H, Tasnádi F et al (2014) Anomalous epitaxial stability of (001) interfaces in ZrN/SiNx multilayers. APL Mater 2(4):046106.  https://doi.org/10.1063/1.4870876Google Scholar
  39. 39.
    Ma S, Xu B, Wu G et al (2008) Microstructure and mechanical properties of SiCN hard films deposited by an arc enhanced magnetic sputtering hybrid system. Surf Coatings Technol 202(22):5379–5382.  https://doi.org/10.1016/j.surfcoat.2008.06.057Google Scholar
  40. 40.
    van Raay JJAM, Rozing PM, van Blitterswijk CA et al (1995) Biocompatibility of wear-resistant coatings in orthopedic surgery in vitro testing with human fibroblast cell cultures. J Mater Sci Mater Med 6(2):80–84.  https://doi.org/10.1007/BF00120412Google Scholar
  41. 41.
    Koehler JS (1970) Attempt to design a strong solid. Phys Rev B 2(2):547–551.  https://doi.org/10.1103/PhysRevB.2.547Google Scholar
  42. 42.
    Ivashchenko VI, Veprek S, Turchi PEA et al (2014) First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures. Thin Solid Films 564:284–293.  https://doi.org/10.1016/j.tsf.2014.05.036Google Scholar
  43. 43.
    Zhitomirsky VN (2007) Structure and properties of cathodic vacuum arc deposited NbN and NbN-based multi-component and multi-layer coatings. Surf Coatings Technol 201(13):6122–6130.  https://doi.org/10.1016/j.surfcoat.2006.08.125Google Scholar
  44. 44.
    Söderberg H, Odén M, Molina-Aldareguia JM et al (2005) Nanostructure formation during deposition of TiN∕SiN[sub x] nanomultilayer films by reactive dual magnetron sputtering. J Appl Phys 97(11):114327.  https://doi.org/10.1063/1.1935135Google Scholar
  45. 45.
    Lin S, Zhou K, Dai M et al (2015) Influence of modulation period on mechanical behavior of Ti-TiN-Zr-ZrN multi-layered coatings. Zhenkong Kexue yu Jishu Xuebao/J Vac Sci Technol 35(1):114–118.  https://doi.org/10.13922/j.cnki.cjovst.2015.01.21
  46. 46.
    Kong M, Dai J, Lao J et al (2007) Crystallization of amorphous SiC and superhardness effect in TiN/SiC nanomultilayers. Appl Surf Sci 253(10):4734–4739.  https://doi.org/10.1016/j.apsusc.2006.10.050Google Scholar
  47. 47.
    López-Vidrier J, Löper P, Schnabel M et al (2016) Silicon nanocrystals embedded in silicon carbide as a wide-band gap photovoltaic material. Sol Energy Mater Sol Cells 144:551–558.  https://doi.org/10.1016/j.solmat.2015.10.006Google Scholar
  48. 48.
    Huang S-H, Chen S-F, Kuo Y-C et al (2011) Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings. Surf Coatings Technol 206(7):1744–1752.  https://doi.org/10.1016/j.surfcoat.2011.10.029Google Scholar
  49. 49.
    Wu MK, Lee JW, Chan YC et al (2011) Influence of bilayer period and thickness ratio on the mechanical and tribological properties of CrSiN/TiAlN multilayer coatings. Surf Coatings Technol 206(7):1886–1892.  https://doi.org/10.1016/j.surfcoat.2011.07.045Google Scholar
  50. 50.
    Silva HG, Pereira AM, Teixeira JM et al (2010) Magnetic field strength and orientation effects on Co-Fe discontinuous multilayers close to percolation. Phys Rev B—Condens Matter Mater Phys 82(14):144432. https://doi.org/10.1103/PhysRevB.82.144432
  51. 51.
    Tavares CJ (1998) Deposition and characterization of multilayered TiNrZrN coatings. Thin Solid Films 317(1–2):8–12.  https://doi.org/10.1016/S0040-6090(97)00607-XGoogle Scholar
  52. 52.
    Krishna H, Shirato N, Yadavali S et al (2011) Self-organization of nanoscale multilayer liquid metal films: experiment and theory. ACS Nano 5(1):470–476.  https://doi.org/10.1021/nn1022632Google Scholar
  53. 53.
    Pogrebnjak A, Maksakova O, Kozak C et al (2016) Physical and mechanical properties of nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method. Prz Elektrotechniczny 92(8):180–183. https://doi.org/10.15199/48.2016.08.49Google Scholar
  54. 54.
    Maksakova OV, Grankin SS, Bondar OV et al (2015) Nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method: structure and properties. J Nano- Electron Phys 7(4):04098-1–04098-7Google Scholar
  55. 55.
    Martínez-Martínez D, López-Cartes C, Fernández A et al (2009) Influence of the microstructure on the mechanical and tribological behavior of TiC/a-C nanocomposite coatings. Thin Solid Films 517(5):1662–1671.  https://doi.org/10.1016/j.tsf.2008.09.091Google Scholar
  56. 56.
    Chen S-F, Kuo Y-C, Wang C-J et al (2013) The effect of Cr/Zr chemical composition ratios on the mechanical properties of CrN/ZrN multilayered coatings deposited by cathodic arc deposition system. Surf Coatings Technol 231:247–252.  https://doi.org/10.1016/j.surfcoat.2012.03.002Google Scholar
  57. 57.
    Braic M, Balaceanu M, Parau AC et al (2015) Investigation of multilayered TiSiC/NiC protective coatings. Vacuum 120(PA):60–66.  https://doi.org/10.1016/j.vacuum.2015.06.019Google Scholar
  58. 58.
    Bobzin K, Brögelmann T, Kruppe NC et al (2017) Plastic deformation behavior of nanostructured CrN/AlN multilayer coatings deposited by hybrid dcMS/HPPMS. Surf Coatings Technol 332:253–261.  https://doi.org/10.1016/j.surfcoat.2017.06.092Google Scholar
  59. 59.
    Musil J, Jirout M (2007) Toughness of hard nanostructured ceramic thin films. Surf Coatings Technol 201(9–11):5148–5152.  https://doi.org/10.1016/j.surfcoat.2006.07.020Google Scholar
  60. 60.
    Jian J, Lee JH, Liu Y et al (2016) Plastic deformation in nanocrystalline TiN at ultra-low stress: An in situ nanoindentation study. Mater Sci Eng A 650:445–453.  https://doi.org/10.1016/j.msea.2015.10.002Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • O. V. Bondar
    • 1
    • 2
    Email author
  • Alexander D. Pogrebnjak
    • 1
  • Y. Takeda
    • 2
  • B. Postolnyi
    • 3
  • P. Zukowski
    • 4
  • R. Sakenova
    • 5
  • V. Beresnev
    • 6
  • V. Stolbovoy
    • 7
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.National Institute for Materials Science (NIMS)Tsukuba, Ibaraki PrefectureJapan
  3. 3.IFIMUP and IN-Institute of Nanoscience and Nanotechnology, University of PortoPortoPortugal
  4. 4.Lublin University of TechnologyLublinPoland
  5. 5.East-Kazakhstan State Technical UniversityUst’-KamenogorskKazakhstan
  6. 6.V.N. Karazin National UniversityKharkivUkraine
  7. 7.National Science Center “Kharkiv Institute of Physics and Technology”KharkivUkraine

Personalised recommendations