Skip to main content

Bone Marrow Stem Cells, Aging, and Age-Related Diseases

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

Bone marrow is a soft, gelatinous, and dynamic tissue present in the central cavity of long bones such as the femora and humeri. Bone marrow is a large reservoir of pluripotent stem cells such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), and multipotent adult progenitor cells (MAPCs). Apart from stem cells, it also has bone marrow stromal cells comprising endothelial cells (ECs), osteoclasts, osteoblasts, fibroblasts, tissue macrophages, and adipocytes along with soluble components such as cytokines, chemokines, growth factors, and hormones. Bone marrow has a unique capability to proliferate and differentiate into unspecified lineage of all types of cells of the body and provide immunity to the body. Hence it serves as an organ of the immune system. However, the life-span of tissues depends on the replacement of damaged cells and supply of new cells. With advancing age, bone marrow and stem cells are inefficient to maintain the homeostasis for the delivery of new cells, because of alterations in bone marrow and bone marrow stem cells, which lead to aging process. Aging is a universal process. All cells, tissues, organs, and organisms undergo changes with age. Age-related bone marrow alterations, which include deterioration of bone marrow cellularity, fat cell deposition, and contracted hematopoietic tissue are strictly associated with many age-related diseases such as cancer, altered B lymphopoiesis, osteoporosis, and age-related macular diseases. Various theories explain that the aging process is associated with the bone marrow. Theories such as stem cell theory of aging, gene expression theory, epigenetic mechanism, reactive oxygen species (ROS) theory, metabolic theory, and telomere theory of aging are helpful to understand the process of aging. However, the exact mechanism of aging is still unclear. The extreme consequences of aging are tissue failure, failure of regeneration processes, diseases, and lastly death. In recent years, advanced medical science such as bone marrow transplantation has increased health span and life-span and showed great potential towards the recovery from age-related diseases such as type-2 diabetes, osteoporosis, and Alzheimer’s diseases. However, we have many questions such as the following: What is the principal rule of aging? Can aging be prevented? and How can we increase life-span? These questions are remaining to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy DT et al (2010) Bone marrow. Magn Reson Imaging Clin N Am 18(4):727–735

    Article  PubMed  Google Scholar 

  2. Guillerman RP (2013) Marrow: red, yellow and bad. Pediatr Radiol 43(Suppl 1):181–192

    Article  Google Scholar 

  3. Travlos G (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34(5):548

    Article  PubMed  Google Scholar 

  4. Compston JE (2002) Bone marrow and bone: a functional unit. J Endocrinol 173(3):387–394

    Article  CAS  PubMed  Google Scholar 

  5. Zhao E et al (2012) Bone marrow and the control of immunity. Cell Mol Immunol 9(1):11–19

    Article  CAS  PubMed  Google Scholar 

  6. Trumpp A, Essers M, Wilson A (2010) Awakening dormant haematopoietic stem cells. Nat Rev Immunol 10(3):201–209

    Article  CAS  PubMed  Google Scholar 

  7. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    Article  CAS  PubMed  Google Scholar 

  8. Pleyer L, Valent P, Greil R (2016) Mesenchymal stem and progenitor cells in normal and dysplastic hematopoiesis-masters of survival and clonality? Int J Mol Sci 17(7):1009

    Article  PubMed Central  CAS  Google Scholar 

  9. Reyes M et al (2005) Donor origin of multipotent adult progenitor cells in radiation chimeras. Blood 106(10):3646–3649

    Article  CAS  PubMed  Google Scholar 

  10. Wognum AW, Eaves AC, Thomas TE (2003) Identification and isolation of hematopoietic stem cells. Arch Med Res 34(6):461–475

    Article  CAS  PubMed  Google Scholar 

  11. Kovtonyuk LV et al (2016) Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol 7:502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Latchney SE, Calvi LM (2017) The aging hematopoietic stem cell niche: phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Semin Hematol 54(1):25–32

    Article  PubMed  Google Scholar 

  13. Pinto A et al (2003) Aging and the hemopoietic system. Crit Rev Oncol Hematol 48(Suppl):S3–S12

    Article  PubMed  Google Scholar 

  14. Ergen AV, Goodell MA (2010) Mechanisms of hematopoietic stem cell aging. Exp Gerontol 45(4):286–290

    Article  CAS  PubMed  Google Scholar 

  15. Ikehara S, Li M (2014) Stem cell transplantation improves aging-related diseases. Front Cell Dev Biol 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding D-C, Shyu W-C, Lin S-Z (2011) Mesenchymal stem cells. Cell Transplant 20(1):5–14

    Article  PubMed  Google Scholar 

  17. Soleimani M, Nadri S (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 4(1):102–106

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs SA et al (2013) Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol 91(1):32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu H et al (2010) A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5(3):550–560

    Article  CAS  PubMed  Google Scholar 

  20. Baker N, Boyette LB, Tuan RS (2015) Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 70:37–47

    Article  CAS  PubMed  Google Scholar 

  21. Gökçinar-Yagci B, Uçkan-Çetinkaya D, Çelebi-Saltik B (2015) Pericytes: properties, functions and applications in tissue engineering. Stem Cell Rev Rep 11(4):549–559

    Article  PubMed  CAS  Google Scholar 

  22. Atoui R, Chiu RC (2012) Concise review: immunomodulatory properties of mesenchymal stem cells in cellular transplantation: update, controversies, and unknowns. Stem Cells Transl Med 1(3):200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sohni A, Verfaillie CM (2011) Multipotent adult progenitor cells. Best Pract Res Clin Haematol 24(1):3–11

    Article  CAS  PubMed  Google Scholar 

  24. Jiang Y et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    Article  CAS  PubMed  Google Scholar 

  25. Kopp H-G et al (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 20(5):349–356

    Article  CAS  PubMed  Google Scholar 

  26. Prabhakar M, Ershler WB, Longo DL (2009) Bone marrow, thymus and blood: changes across the lifespan. Aging health 5(3):385–393

    Article  Google Scholar 

  27. Hardouin P, Pansini V, Cortet B (2014) Bone marrow fat. Joint Bone Spine 81(4):313–319

    Article  PubMed  Google Scholar 

  28. Kramer A, Challen GA (2017) The epigenetic basis of hematopoietic stem cell aging. Semin Hematol 54(1):19–24

    Article  PubMed  Google Scholar 

  29. Gross L (2007) Mechanisms of aging in bone marrow stem cells. PLoS Biol 5(8):e215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pang WW, Schrier SL, Weissman IL (2017) Age-associated changes in human hematopoietic stem cells. Semin Hematol 54(1):39–42

    Article  PubMed  Google Scholar 

  31. Torano EG et al (2016) Age-associated hydroxymethylation in human bone-marrow mesenchymal stem cells. J Transl Med 14(1):207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhu YP, Hedrick CC, Gaddis DE (2017) Hematopoietic stem cells gone rogue. Science 355(6327):798–799

    Article  CAS  PubMed  Google Scholar 

  33. Sahin E, DePinho RA (2012) Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol 13(6):397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tothova Z et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339

    Article  CAS  PubMed  Google Scholar 

  35. Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1(2):140–152

    Article  CAS  PubMed  Google Scholar 

  36. van Heemst D (2010) Insulin, IGF-1 and longevity. Aging Dis 1(2):147–157

    PubMed  PubMed Central  Google Scholar 

  37. Calado RT (2009) Telomeres and marrow failure. Hematol Am Soc Hematol Educ Progr:338–343

    Article  Google Scholar 

  38. Henry CJ et al (2010) Declining lymphoid progenitor fitness promotes aging-associated leukemogenesis. Proc Natl Acad Sci U S A 107(50):21713–21718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim M et al (2016) Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia 30(1):154–162

    Article  CAS  PubMed  Google Scholar 

  40. Petrov I et al (2016) Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells. Aging (Albany NY) 8(11):2936–2947

    Article  CAS  Google Scholar 

  41. Riley RL (2013) Impaired B lymphopoiesis in old age: a role for inflammatory B cells? Immunol Res 57(1–3):361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kannan S et al (2016) Age-related changes in the transcriptome of antibody-secreting cells. Oncotarget 7(12):13340

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang L et al (2016) Role of osteoprotegerin (OPG) in bone marrow adipogenesis. Cell Physiol Biochem 40(3–4):681–692

    Article  CAS  PubMed  Google Scholar 

  44. Takeshita S et al (2014) Age-related marrow adipogenesis is linked to increased expression of RANKL. J Biol Chem 289(24):16699–16710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salem S et al (2014) A novel role for interferon regulatory factor 1 (IRF1) in regulation of bone metabolism. J Cell Mol Med 18(8):1588–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ambati J et al (2003) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48(3):257–293

    Article  PubMed  Google Scholar 

  47. Chirco K et al (2017) Structural and molecular changes in the aging choroid: implications for age-related macular degeneration. Eye 31(1):10–25

    Article  CAS  PubMed  Google Scholar 

  48. Donath MY (2014) Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 13(6):465–476

    Article  CAS  PubMed  Google Scholar 

  49. Park SS et al (2017) Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retinal Eye Res 56:148–165

    Article  CAS  Google Scholar 

  50. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6(2):93–106

    Article  CAS  PubMed  Google Scholar 

  51. Galan-Caridad JM et al (2007) Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129(2):345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Izadpanah R et al (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99(5):1285–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balsam LB et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428(6983):668–673

    Article  CAS  PubMed  Google Scholar 

  54. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36(4):568–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the award of UGC-JRF and SRF to N.A and financial supports from the DST-PURSE and DST-FIST and UGC-RNRC and UGC-DRS programs to both SLS and PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod C. Rath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahamad, N., Rath, P.C. (2019). Bone Marrow Stem Cells, Aging, and Age-Related Diseases. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_15

Download citation

Publish with us

Policies and ethics