Skip to main content
Log in

Impaired B lymphopoiesis in old age: a role for inflammatory B cells?

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Continued generation of new B cells within the bone marrow is required throughout life. However, in old age, B lymphopoiesis is inhibited at multiple developmental stages from hematopoietic stem cells through the late stages of new B cell generation. While changes in B cell precursor subsets, as well as alterations in the supporting bone marrow microenvironment, in old age have been known for the last 20 years, only more recently have insights into the cellular and molecular mechanisms responsible become clarified. Our recent discovery that B cells in aged mice are pro-inflammatory and can diminish B cell generation within the bone marrow suggests a potential mechanism of inappropriate “B cell feedback” which contributes to a bone marrow microenvironment unfavorable to B lymphopoiesis. We hypothesize that the consequences of a pro-inflammatory microenvironment in old age are (1) reduced B cell generation and (2) alteration in the “read-out” of the antibody repertoire. Both of these likely ensue from reduced expression of the surrogate light chain (λ5 + VpreB) and consequently reduced expression of the pre-B cell receptor (preBCR), critical to pre-B cell expansion and Vh selection. In old age, B cell development may progressively be diverted into a preBCR-compromised pathway. These abnormalities in B lymphopoiesis likely contribute to the poor humoral immunity seen in old age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5:133–9.

    Article  CAS  PubMed  Google Scholar 

  2. Cancro M, Hao Y, Scholz J, Riley R, Frasca D, Dunn-Walters D, Blomberg BB. B cells and aging: molecules and mechanisms. Trends Immunol. 2009;30:313–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Scholz JL, Diaz A, Riley RL, Cancro MP, Frasca D. A comparative review of aging and B cell function in mice and humans. Curr Opin Immunol. 2013;25:504–10.

    Article  CAS  PubMed  Google Scholar 

  4. Miller JP, Cancro MP. B cells and aging: balancing the homeostatic equation. Exp Gerontol. 2007;42:396–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Vasto S, Candore G, Balistreri CR, Caruso M, Colonna-Romano G, Grimaldi MP, Listi F, Nuzzo D, Lio D, Caruso C. Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev. 2007;128:83–91.

    Article  CAS  PubMed  Google Scholar 

  6. Hao Y, O’Neill P, Naradikian M, Scholz J, Cancro MP. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 2011;118:1294–304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Rubtsov A, Rubtsova K, Fischer A, Meehan R, Gillis J, Kappler J, Marrack P. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c(+) B-cell population is important for the development of autoimmunity. Blood. 2011;118:1305–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ratliff M, Alter S, Frasca D, Blomberg BB, Riley RL. In senescence, age-associated B cells secrete TNFα and inhibit survival of B-cell precursors. Aging Cell. 2013;12:177–332.

    Article  Google Scholar 

  9. Riley RL, Kruger MG, Elia J. B cell precursors are decreased in senescent BALB/c mice, but retain normal mitotic activity in vivo and in vitro. Clin Immunol Immunopathol. 1991;59:301–13.

    Article  CAS  PubMed  Google Scholar 

  10. Stephan RP, Sanders VM, Witte PL. Stage-specific alterations in murine B lymphopoiesis with age. Int Immunol. 1996;8:509–18.

    Article  CAS  PubMed  Google Scholar 

  11. Van der Put E, Sherwood EM, Blomberg BB, Riley RL. Aged mice exhibit distinct B cell precursor phenotypes differing in activation, proliferation and apoptosis. Exp Gerontol. 2003;38:1137–47.

    Article  PubMed  Google Scholar 

  12. Labrie JE, Sah A, Allman D, Cancro M, Gerstein R. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J Exp Med. 2004;200:411–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Melchers F, ten Boekel E, Seidl T, Kong XC, Yamagami T, Onishi K, Shimizu T, Rolink AG, Andersson J. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol Rev. 2000;175:33–46.

    Article  CAS  PubMed  Google Scholar 

  14. Sherwood E, Blomberg BB, Xu W, Warner C, Riley R. Senescent BALB/c mice exhibit decreased expression of lambda5 surrogate light chains and reduced development within the pre-B cell compartment. J Immunol. 1998;161:4472–5.

    CAS  PubMed  Google Scholar 

  15. Sherwood E, Xu W, King A, Blomberg BB, Riley RL. The reduced expression of surrogate light chains in B cell precursors from senescent BALB/c mice is associated with decreased E2A proteins. Mech Ageing Dev. 2000;118:45–59.

    Article  CAS  PubMed  Google Scholar 

  16. Kirman I, Zhao K, Wang Y, Szabo P, Telford W, Weksler ME. Increased apoptosis of bone marrow pre-B cells in old mice associated with their low number. Int Immunol. 1998;10:1385–92.

    Article  CAS  PubMed  Google Scholar 

  17. Johnson KM, Owen K, Witte PL. Aging and developmental transitions in the B cel lineage. Int Immunol. 2002;14:1313–23.

    Article  CAS  PubMed  Google Scholar 

  18. Shahaf G, Johnson K, Mehr R. B cell development in aging mice: lessons from mathematical modeling. Int Immunol. 2006;18:31–9.

    Article  CAS  PubMed  Google Scholar 

  19. Rossi MI, Yokota T, Medina KL, Garrett KP, Comp PC, Schipul AH Jr, Kincade PW. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003;101:576–84.

    Article  CAS  PubMed  Google Scholar 

  20. Nunez C, Nishimoto N, Gartland GL, Billips LG, Burrows PD, Kubagawa H, Cooper MD. B cells are generated throughout life in humans. J Immunol. 1996;156:866–72.

    CAS  PubMed  Google Scholar 

  21. McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98:2498–507.

    Article  CAS  PubMed  Google Scholar 

  22. Muller-Sieburg CE, Sieburg HB, Bernitz JM, Cattarossi G. Stem cell heterogeneity: implications for aging and regenerative medicine. Blood. 2012;119:3900–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shimazu T, Iida R, Zhang Q, Welner RS, Medina KL, Alberola-Lla J, Kincade PW. CD86 is expressed on murine hematopoietic stem cells and denotes lymphopoietic potential. Blood. 2012;119:4889–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q, Humphrey MB, Yang Q, Borghesi LA, Kincade PW. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol. 2011;186:5367–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Miller J, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol. 2003;171:2326–30.

    Article  CAS  PubMed  Google Scholar 

  26. Lescale C, Dias S, Maes J, Cumano A, Szabo P, Charron D, Weksler ME, Dosquet C, Vieira P, Goodhardt M. Reduced EBF expression underlies loss of B-cell potential of hematopoietic progenitors with age. Aging Cell. 2010;9:410–9.

    Article  CAS  PubMed  Google Scholar 

  27. Frasca D, Nguyen D, Riley RL, Blomberg BB. Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J Immunol. 2003;170:719–26.

    Article  CAS  PubMed  Google Scholar 

  28. Van der Put E, Frasca D, King AM, Blomberg BB, Riley RL. Decreased E47 in senescent B cell precursors is stage specific and regulated posttranslationally by protein turnover. J Immunol. 2004;173:818–27.

    Article  PubMed  Google Scholar 

  29. King AM, Van der Put E, Blomberg BB, Riley RL. Accelerated Notch-dependent degradation of E47 proteins in aged B cell precursors is associated with increased ERK MAPK activation. J Immunol. 2007;178:3521–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sigvardsson M, O’Riordan M, Grosschedl R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity. 1997;7:25–36.

    Article  CAS  PubMed  Google Scholar 

  31. Medina KL, Singh H. Genetic networks that regulate B lymphopoiesis. Curr Opin Hematol. 2005;12:203–9.

    Article  CAS  PubMed  Google Scholar 

  32. Rolink AG, Schaniel C, Busslinger M, Nutt SL, Melchers F. Fidelity and infidelity in commitment to B-lymphocyte lineage development. Immunol Rev. 2000;175:104–11.

    Article  CAS  PubMed  Google Scholar 

  33. Schebesta M, Pfeffer PL, Busslinger M. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity. 2002;17:473–85.

    Article  CAS  PubMed  Google Scholar 

  34. Siegel R, Kim U, Patke A, Yu X, Ren X, Tarakhovsky A, Roeder RG. Nontranscriptional regulation of SYK by the coactivator OCA-B is required at multiple stages of B cell development. Cell. 2006;125:761–74.

    Article  CAS  PubMed  Google Scholar 

  35. Zandi S, Mansson R, Tsapogas P, Zetterblad J, Bryder D, Sigvardsson M. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J Immunol. 2008;181:3364–72.

    Article  CAS  PubMed  Google Scholar 

  36. Yasuda T, Hayakawa F, Kurahashi S, Sugimoto K, Minami Y, Tomita A, Naoe T. B cell receptor-ERK1/2 signal cancels PAX5-dependent repression of BLIMP1 through PAX5 phosphorylation: a mechanism of antigen-triggering plasma cell differentiation. J Immunol. 2012;188:6127–34.

    Article  CAS  PubMed  Google Scholar 

  37. Zwilling S, Dieckmann A, Pfisterer P, Angel P, Wirth T. Inducible expression and phosphorylation of coactivator BOB.1/OBF.1 in T cells. Science. 1997;277:221–5.

    Article  CAS  PubMed  Google Scholar 

  38. Stephan RP, Reilly CR, Witte PL. Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood. 1998;91:75–88.

    CAS  PubMed  Google Scholar 

  39. Stephan RP, Lill-Elghanian DA, Witte PL. Development of B cells in aged mice: decline in the ability of pro-B cells to respond to IL-7 but not to other growth factors. J Immunol. 1997;158:1598–609.

    CAS  PubMed  Google Scholar 

  40. Ergen AV, Boles NC, Goodel MA. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood. 2012;119:2500–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Su DM, Aw D, Palmer DB. Immunosenescence: a product of the environment? Curr Opin Immunol. 2013;25:498–503.

    Article  CAS  PubMed  Google Scholar 

  42. Swain S, Clise-Dwyer K, Haynes L. Homeostasis and the age-associated defect of CD4 T cells. Semin Immunol. 2005;17:370–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Song H, Price PW, Cerny J. Age-related changes in antibody repertoire: contribution from T cells. Immunol Rev. 1997;160:55–62.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng B, Han S, Takahashi Y, Kelsoe G. Immunosenescence and germinal center reaction. Immunol Rev. 1997;160:63–77.

    Article  CAS  PubMed  Google Scholar 

  45. Frasca D, Landin AM, Riley RL, Blomberg BB. Mechanisms for decreased function of B cells in aged mice and humans. J Immunol. 2008;180:2741–6.

    Article  CAS  PubMed  Google Scholar 

  46. Frasca D, Riley RL, Blomberg BB. Aging murine B cells have decreased class switch induced by anti-CD40 or BAFF. Exp Gerontol. 2007;42:192–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Frasca D, Van der Put E, Riley RL, Blomberg BB. Reduced Ig class switch in aged mice correlates with decreased E47 and activation-induced cytidine deaminase. J Immunol. 2004;172:2155–62.

    Article  CAS  PubMed  Google Scholar 

  48. Yang X, Stedra J, Cerny J. Relative contribution of T and B cells to hypermutation and selection of the antibody repertoire in germinal centers of aged mice. J Exp Med. 1996;183(3):959–70.

    Article  CAS  PubMed  Google Scholar 

  49. Frasca D, Landin AM, Lechner SC, Ryan JG, Schwartz R, Riley RL, Blomberg BB. Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J Immunol. 2008;180:5283–90.

    Article  CAS  PubMed  Google Scholar 

  50. Chahwan R, Edelmann W, Scharff MD, Roa S. AIDing antibody diversity by error-prone mismatch repair. Semin Immunol. 2012;24:293–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Frasca D, Romero M, Diaz A, Alter-Wolf S, Ratliff M, Landin A, Riley R, Blomberg B. A molecular mechanism for TNF-alpha-mediated downregulation of B cell responses. J Immunol. 2012;188:279–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Klinman NR, Kline GH. The B-cell biology of aging. Immunol Rev. 1997;160:103–14.

    Article  CAS  PubMed  Google Scholar 

  53. Nicoletti C, Borghesi-Nicoletti C, Yang XH, Schulze DH, Cerny J. Repertoire diversity of antibody response to bacterial antigens in aged mice. II. Phosphorylcholine-antibody in young and aged mice differ in both VH/VL gene repertoire and in specificity. J Immunol. 1991;147:2750–5.

    CAS  PubMed  Google Scholar 

  54. Riley SC, Froscher BG, Linton PJ, Zharhary D, Marcu K, Klinman NR. Altered VH gene segment utilization in the response to phosphorylcholine by aged mice. J Immunol. 1989;143:3798–805.

    CAS  PubMed  Google Scholar 

  55. Zharhary D, Klinman NR. B cell repertoire diversity to PR8 influenza virus does not decrease with age. J Immunol. 1984;133:2285–7.

    CAS  PubMed  Google Scholar 

  56. Zharhary D, Klinman NR. The frequency and fine specificity of B cells responsive to (4-hydroxy-3-nitrophenyl)acetyl in aged mice. Cell Immunol. 1986;100:452–61.

    Article  PubMed  Google Scholar 

  57. Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, Nilsson BO, Wikby A, Kipling D, Dunn-Walters DK. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009;8:18–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. ten Boekel E, Melchers F, Rolink AG. Changes in the VH gene repertoire of developing precursor B lymphocytes in mouse bone marrow mediated by the pre-B cell receptor. Immunity. 1997;7:357–68.

    Article  PubMed  Google Scholar 

  59. Kline GH, Hartwell L, Beck-Engeser GB, Keyna U, Zaharevitz S, Klinman NR, Jäck HM. Pre-B cell receptor-mediated selection of pre-B cells synthesizing functional mu heavy chains. J Immunol. 1998;161:1608–18.

    CAS  PubMed  Google Scholar 

  60. Keyna U, Beck-Engeser GB, Jongstra J, Applequist SE, Jack HM. Surrogate light chain-dependent selection of Ig heavy chain V regions. J Immunol. 1995;155:55365542.

    Google Scholar 

  61. Ye J, McCray SK, Clarke SH. The transition of pre-B1 to pre-BII cells is dependent on the VH structure of the μ/surrogate L chain receptor. EMBO J. 1996;15:1524–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Keenan RA, De Riva A, Corleis B, Hepburn L, Licence S, Winkler TH, Mårtensson IL. Censoring of autoreactive B cell development by the pre-B cell receptor. Science. 2008;321:696–9.

    Article  CAS  PubMed  Google Scholar 

  63. Alter-Wolf S, Blomberg BB, Riley RL. Deviation of the B cell pathway in senescent mice is associated with reduced surrogate light chain expression and altered immature B cell generation, phenotype, and light chain expression. J Immunol. 2009;182:138–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Wols HA, Johnson KM, Ippolito JA, Birjandi SZ, Su Y, Le PT, Witte PL. Migration of immature and mature B cells in the aged microenvironment. Immunology. 2010;129:278–90.

    Article  PubMed  Google Scholar 

  65. Kline GH, Hayden TA, Klinman NR. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J Immunol. 1999;162:3342–9.

    CAS  PubMed  Google Scholar 

  66. Johnson SA, Rozzo SJ, Cambier JC. Aging-dependent exclusion of antigen-inexperienced cells from the peripheral B cell repertoire. J Immunol. 2002;168:5014–23.

    Article  CAS  PubMed  Google Scholar 

  67. Keren Z, Naor S, Nussbaum S, Golan K, Itkin T, Sasaki Y, Schmidt-Supprian M, Lapidot T, Melamed D. B-cell depletion reactivates B lymphopoiesis in the BM and rejuvenates the B lineage in aging. Blood. 2011;117:3104–12.

    Article  CAS  PubMed  Google Scholar 

  68. Keren Z, Averbuch D, Shahaf G, Zisman-Rozen S, Golan K, Itkin T, Lapidot T, Mehr R, Melamed D. Chronic B cell deficiency from birth prevents age-related alterations in the B lineage. J Immunol. 2011;187:2140–7.

    Article  CAS  PubMed  Google Scholar 

  69. Van Den Broeck A, Cambier J. B cells talk to their progenitors. Blood. 2011;117:2985–6.

    Article  Google Scholar 

  70. Yanaba K. Bouaziz J.-D., Matsushita T, Tsubata T, Tedder TF. The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J Immunol. 2009;182:7459–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. King A, Keating P, Prabhu A, Blomberg BB. Riley RL. NK cells in the CD19 B220+ bone marrow fraction are increased in senescence and reduce E2A and surrogate light chain proteins in B cell precursors. Mech Ageing Dev. 2009;130:384–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Riley laboratory past and present and our collaborators, Dr. Bonnie Blomberg and Dr. Daniela Frasca and their laboratories, for reading of the manuscript, stimulating discussions, and assistance in the performance of our studies described herein. Support was provided by the National Institutes of Health, National Institute on Aging Grant R01 AG025256 to RLR.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riley, R.L. Impaired B lymphopoiesis in old age: a role for inflammatory B cells?. Immunol Res 57, 361–369 (2013). https://doi.org/10.1007/s12026-013-8444-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8444-5

Keywords

Navigation