Advertisement

Identification of Sphingolipid-binding Motif in G Protein-coupled Receptors

  • Sandeep Shrivastava
  • Md. Jafurulla
  • Shrish Tiwari
  • Amitabha ChattopadhyayEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1112)

Abstract

Sphingolipids correspond to a major class of lipids which serve as indispensable structural components of membranes and play an important role in various cellular functions. They constitute ~10–20% of total membrane lipids and are known to form segregated domains in biological membranes. Sphingolipids have been shown to play a vital role in the function of various G protein-coupled receptors (GPCRs). We report here the presence of sphingolipid-binding motif (SBM) in representative GPCRs such as cholecystokinin, oxytocin and secretin receptors, and subtypes of human serotonin receptors. We previously reported the importance of sphingolipids in the function of the serotonin1A receptor, a representative member of the GPCR superfamily, involved in behavioral, cognitive, and developmental functions. In this work, we show that the serotonin1A receptor contains a putative SBM, corresponding to amino acids 205 to 213. In addition, our analysis shows that SBM is an intrinsic characteristic feature of the serotonin1A receptor and is conserved throughout the course of natural evolution. Our results represent the first report on the presence of SBM in serotonin1A receptors and provide novel insight on the molecular mechanism of GPCR-sphingolipid interaction.

Keywords

SBM Sphingolipids GPCR Serotonin1A receptor CRAC 

Abbreviations

CRAC

Cholesterol recognition/interaction amino acid consensus

GPCR

G protein-coupled receptor

SBM

Sphingolipid-binding motif

Notes

Acknowledgments

This work was supported by the Science and Engineering Research Board (Govt. of India) project (EMR/2016/002294). A.C. gratefully acknowledges J.C. Bose Fellowship from the Department of Science and Technology, Govt. of India. A.C. is an Adjunct Professor of Tata Institute of Fundamental Research (Mumbai), RMIT University (Melbourne, Australia), Indian Institute of Technology (Kanpur), and Indian Institute of Science Education and Research (Mohali). We thank members of the Chattopadhyay laboratory for critically reading the manuscript.

References

  1. Alves ID, Salamon Z, Hruby VJ, Tollin G (2005) Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers. Biochemistry 44:9168–9178CrossRefGoogle Scholar
  2. Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease-a review. J Lipid Res 49:1157–1175CrossRefGoogle Scholar
  3. Bienias K, Fiedorowicz A, Sadowska A, Prokopiuk S, Car H (2016) Regulation of sphingomyelin metabolism. Pharmacol Rep 68:570–581CrossRefGoogle Scholar
  4. Björkholm P, Ernst AM, Hacke M, Wieland F, Brügger B, von Heijne G (2014) Identification of novel sphingolipid-binding motifs in mammalian membrane proteins. Biochim Biophys Acta 1838:2066–2070CrossRefGoogle Scholar
  5. Brown RE (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111:1–9PubMedPubMedCentralGoogle Scholar
  6. Chattopadhyay A (2014) GPCRs: lipid-dependent membrane receptors that act as drug targets. Adv Biol 2014:143023CrossRefGoogle Scholar
  7. Chattopadhyay A, Jafurulla M (2012) Role of membrane cholesterol in leishmanial infection. Adv Exp Med Biol 749:201–213CrossRefGoogle Scholar
  8. Chattopadhyay A, Paila YD, Shrivastava S, Tiwari S, Singh P, Fantini J (2012) Sphingolipid binding domain in the serotonin1A receptor. Adv Exp Med Biol 749:279–293CrossRefGoogle Scholar
  9. Contreras F-X, Ernst AM, Haberkant P, Björkholm P, Lindahl E, Gönen B, Tischer C, Elofsson A, von Heijne G, Thiele C, Pepperkok R, Wieland F, Brügger B (2012) Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481:525–529CrossRefGoogle Scholar
  10. Cooke RM, Brown AJH, Marshall FH, Mason JS (2015) Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 20:1355–1364CrossRefGoogle Scholar
  11. Fantini J, Barrantes FJ (2009) Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta 1788:2345–2361CrossRefGoogle Scholar
  12. Fiorino F, Severino B, Magli E, Ciano A, Caliendo G, Santagada V, Frecentese F, Perissutti E (2014) 5-HT1A receptor: an old target as a new attractive tool in drug discovery from central nervous system to cancer. J Med Chem 57:4407–4426CrossRefGoogle Scholar
  13. Haleem DJ (2015) 5-HT1A receptor-dependent control of nigrostriatal dopamine neurotransmission in the pharmacotherapy of Parkinson’s disease and schizophrenia. Behav Pharmacol 26:45–58CrossRefGoogle Scholar
  14. Harikumar KG, Puri V, Singh RD, Hanada K, Pagano RE, Miller LJ (2005) Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J Biol Chem 280:2176–2185CrossRefGoogle Scholar
  15. Heilker R, Wolff M, Tautermann CS, Bieler M (2009) G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today 14:231–240CrossRefGoogle Scholar
  16. Holthuis JCM, Pomorski T, Raggers RJ, Sprong H, van Meer G (2001) The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev 81:1689–1723CrossRefGoogle Scholar
  17. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554CrossRefGoogle Scholar
  18. Huber T, Botelho AV, Beyer K, Brown MF (2004) Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys J 86:2078–2100CrossRefGoogle Scholar
  19. Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14CrossRefGoogle Scholar
  20. Jacobson KA (2015) New paradigms in GPCR drug discovery. Biochem Pharmacol 98:541–555CrossRefGoogle Scholar
  21. Jafurulla M, Bandari S, Pucadyil TJ, Chattopadhyay A (2017) Sphingolipids modulate the function of human serotonin1A receptors: insights from sphingolipid-deficient cells. Biochim Biophys Acta 1859:598–604CrossRefGoogle Scholar
  22. Jafurulla M, Chattopadhyay A (2013) Membrane lipids in the function of serotonin and adrenergic receptors. Curr Med Chem 20:47–55CrossRefGoogle Scholar
  23. Jafurulla M, Chattopadhyay A (2015) Sphingolipids in the function of G protein-coupled receptors. Eur J Pharmacol 763:241–246CrossRefGoogle Scholar
  24. Jafurulla M, Pucadyil TJ, Chattopadhyay A (2008) Effect of sphingomyelinase treatment on ligand binding activity of human serotonin1A receptors. Biochim Biophys Acta 1778:2022–2025CrossRefGoogle Scholar
  25. Jafurulla M, Tiwari S, Chattopadhyay A (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404:569–573CrossRefGoogle Scholar
  26. Kalipatnapu S, Chattopadhyay A (2007) Membrane organization and function of the serotonin1A receptor. Cell Mol Neurobiol 27:1097–1116CrossRefGoogle Scholar
  27. Kaufman J, DeLorenzo C, Choudhury S, Parsey RV (2016) The 5-HT1A receptor in major depressive disorder. Eur Neuropsychopharmacol 26:397–410CrossRefGoogle Scholar
  28. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefGoogle Scholar
  29. Kumar GA, Jafurulla M, Chattopadhyay A (2016) The membrane as the gatekeeper of infection: cholesterol in host-pathogen interaction. Chem Phys Lipids 199:179–185CrossRefGoogle Scholar
  30. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  31. Masserini M, Ravasi D (2001) Role of sphingolipids in the biogenesis of membrane domains. Biochim Biophys Acta 1532:149–161CrossRefGoogle Scholar
  32. Müller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81:133–178CrossRefGoogle Scholar
  33. Paila YD, Chattopadhyay A (2010) Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 51:439–466CrossRefGoogle Scholar
  34. Paila YD, Ganguly S, Chattopadhyay A (2010) Metabolic depletion of sphingolipids impairs ligand binding and signaling of human serotonin1A receptors. Biochemistry 49:2389–2397CrossRefGoogle Scholar
  35. Paila YD, Tiwari S, Chattopadhyay A (2009) Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? Biochim Biophys Acta 1788:295–302CrossRefGoogle Scholar
  36. Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A (2010) Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 41:314–340CrossRefGoogle Scholar
  37. Prasanna X, Jafurulla M, Sengupta D, Chattopadhyay A (2016) The ganglioside GM1 interacts with the serotonin1A receptor via the sphingolipid binding domain. Biochim Biophys Acta 1858:2818–2826CrossRefGoogle Scholar
  38. Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S (2011) Secondary alterations of sphingolipid metabolism in lysosomal storage diseases. Neurochem Res 36:1654–1668CrossRefGoogle Scholar
  39. Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333CrossRefGoogle Scholar
  40. Pucadyil TJ, Chattopadhyay A (2007) Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol 23:49–53CrossRefGoogle Scholar
  41. Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005) The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 25:553–580CrossRefGoogle Scholar
  42. Riethmüller J, Riehle A, Grassmé H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147CrossRefGoogle Scholar
  43. Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363CrossRefGoogle Scholar
  44. Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. J Mol Biol 296:921–936CrossRefGoogle Scholar
  45. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39CrossRefGoogle Scholar
  46. Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202CrossRefGoogle Scholar
  47. Singh P, Chattopadhyay A (2012) Removal of sphingomyelin headgroup inhibits the ligand binding function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun 419:321–325CrossRefGoogle Scholar
  48. Singh P, Paila YD, Chattopadhyay A (2012) Role of glycosphingolipids in the function of human serotonin1A receptors. J Neurochem 123:716–724CrossRefGoogle Scholar
  49. Sjögren B, Svenningsson P (2007) Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7(a) receptors in HeLa cells. Acta Physiol 190:47–53CrossRefGoogle Scholar
  50. Slotte JP (2013) Biological functions of sphingomyelins. Prog Lipid Res 52:424–437CrossRefGoogle Scholar
  51. Snook CF, Jones JA, Hannun YA (2006) Sphingolipid-binding proteins. Biochim Biophys Acta 1761:927–946CrossRefGoogle Scholar
  52. Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A, Meltzer HY (2007) Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res 95:158–168CrossRefGoogle Scholar
  53. Tan SKH, Hartung H, Sharp T, Temel Y (2011) Serotonin-dependent depression in Parkinson’s disease: a role for the subthalamic nucleus. Neuropharmacology 61:387–399CrossRefGoogle Scholar
  54. van Echten-Deckert G, Herget T (2006) Sphingolipid metabolism in neural cells. Biochim Biophys Acta 1758:1978–1994CrossRefGoogle Scholar
  55. van Echten-Deckert G, Walter J (2012) Sphingolipids: critical players in Alzheimer’s disease. Prog Lipid Res 51:378–393CrossRefGoogle Scholar
  56. Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R (2010) Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 102:391–407CrossRefGoogle Scholar
  57. Wirth A, Holst K, Ponimaskin E (2017) How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 151:35–56CrossRefGoogle Scholar
  58. Wu G, Lu Z-H, Kulkarni N, Ledeen RW (2012) Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 90:1997–2008CrossRefGoogle Scholar
  59. Zeidan YH, Hannun YA (2007) Translational aspects of sphingolipid metabolism. Trends Mol Med 13:327–336CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sandeep Shrivastava
    • 1
  • Md. Jafurulla
    • 1
  • Shrish Tiwari
    • 1
  • Amitabha Chattopadhyay
    • 1
    Email author
  1. 1.CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia

Personalised recommendations