Skip to main content

Drosophila as a Model System for the Identification of Pharmacological Therapies in Neurodegenerative Diseases

  • Chapter
  • First Online:
Insights into Human Neurodegeneration: Lessons Learnt from Drosophila

Abstract

Neurodegenerative diseases (NDs) constitute a very important problem in our current society, as they are usually associated with the aging process. NDs are devastating disorders that lead to severe disabilities and ultimately to death and have a considerable impact on human health. Although intense efforts are being made to shed light on the pathophysiology underlying these diseases, an important concern is that NDs are incurable and existing therapies are only directed to relieve their symptoms or delay the progression of the disease. Therefore, the development of new therapeutic approaches against NDs is urgent and challenging. In such a scenario, Drosophila is a very valuable model organism to study the pathophysiology underlying a wide range of NDs. Besides, Drosophila models of NDs have also become a very important tool for therapeutic discovery to treat these diseases. Here, we review the different experimental approaches used for the identification of therapeutic compounds in fly models of NDs, including the methods used for drug administration and the assays carried out to evaluate the efficacy of the candidate compounds. We also provide information about a number of studies performed in different Drosophila models of human NDs aimed to discover new potential therapies for these disorders.

María Dolores Moltó and Cristina Solana-Manrique are co-first authors in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Salam, O. M. (2008). Drugs used to treat Parkinson’s disease, present status and future directions. CNS & Neurological Disorders Drug Targets, 7, 321–342.

    Article  CAS  Google Scholar 

  • Abolaji, A. O., Adedara, A. O., Adie, M. A., Vicente-Crespo, M., & Farombi, E. O. (2018). Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 503, 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  • Akbergenova, Y., & Littleton, J. T. (2017). Pathogenic Huntington alters BMP signaling and synaptic growth through local disruptions of endosomal compartments. The Journal of Neuroscience, 37, 3425–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, Y. O., Escala, W., Ruan, K., & Zhai, R. G. (2011). Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. Journal of Visualized Experiments, 49, 2504.

    Google Scholar 

  • Ambegaokar, S. S., & Jackson, G. R. (2010). Interaction between eye pigment genes and Tau-induced neurodegeneration in Drosophila melanogaster. Genetics, 186, 435–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari, J. A. (2010). Therapeutic approaches in management of drug-induced hepatotoxicity. Journal of Biological Sciences, 10, 386–395.

    Article  Google Scholar 

  • Apostol, B. L., Kazantsev, A., Raffioni, S., Illes, K., Pallos, J., Bodai, L., et al. (2003). A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proceedings of the National Academy of Sciences, 100, 5950–5955.

    Article  CAS  Google Scholar 

  • Arabit, J. G. J., Elhaj, R., Schriner, S. E., Sevrioukov, E. A., & Jafari, M. (2018). Rhodiola rosea improves lifespan, locomotion, and neurodegeneration in a Drosophila melanogaster model of Huntington’s disease. BioMed Research International, 2018, 1–8.

    Article  CAS  Google Scholar 

  • Arpa, J., Sanz-Gallego, I., Rodríguez-de-Rivera, F. J., Domínguez-Melcón, F. J., Prefasi, D., Oliva-Navarro, J., et al. (2014). Triple therapy with deferiprone, idebenone and riboflavin in Friedreich’s ataxia - open-label trial. Acta Neurologica Scandinavica, 129, 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Aryal, B., & Lee, Y. (2018). Disease model organism for Parkinson disease: Drosophila melanogaster. BMB Reports, 52, 4331.

    Google Scholar 

  • Athauda, D., & Foltynie, T. (2015). The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nature Reviews. Neurology, 11, 25–40.

    Article  CAS  PubMed  Google Scholar 

  • Bates, G., Harper, P. S., & Jones, L. (2002). Huntington’s disease. New York: Oxford University Press.

    Google Scholar 

  • Bauer, J. H., Goupil, S., Garber, G. B., & Helfand, S. L. (2004). An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 101, 12980–12985.

    Article  CAS  Google Scholar 

  • Bayliak, M. M., Burdyliuk, N. I., Izers’ka, L. I., & Lushchak, V. I. (2014). Concentration-dependent effects of Rhodiola Rosea on long-term survival and stress resistance of yeast Saccharomyces cerevisiae: The involvement of Yap 1 and MSN2/4 regulatory proteins. Dose-Response, 12, 93–109.

    Article  PubMed  Google Scholar 

  • Bayot, A., & Rustin, P. (2013). Friedreich’s ataxia, frataxin, PIP5K1B: echo of a distant fracas. Oxidative Medicine and Cellular Longevity, 2013, 725635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bidichandani, S. I., & Delatycki, M. B. (2018). Friedreich’s Ataxia. In M. Adam, H. H. Ardinger, R. A. Pagan, S. E. Wallace, B. LJH, K. Stephens, et al. (Eds.), Gene Reviews®. Seattle: University of Washington.

    Google Scholar 

  • Bijelic, G., Kim, N. R., & O’Donnell, M. J. (2005). Effects of dietary or injected organic cations on larval Drosophila melanogaster: Mortality and elimination of tetraethylammonium from the hemolymph. Archives of Insect Biochemistry and Physiology, 60, 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Biju, K. C., Evans, R. C., Shrestha, K., Carlisle, D. C. B., Gelfond, J., & Clark, R. A. (2018). Methylene Blue Ameliorates Olfactory Dysfunction and Motor Deficits in a Chronic MPTP/Probenecid Mouse Model of Parkinson’s Disease. Neuroscience, 380, 111–122.

    Article  CAS  PubMed  Google Scholar 

  • Błaszczyk, J. W. (2018). The Emerging Role of Energy Metabolism and Neuroprotective Strategies in Parkinson’s Disease. Frontiers in Aging Neuroscience, 10, 301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blesa, J., Phani, S., Jackson-Lewis, V., & Przedborski, S. (2012). Classic and new animal models of Parkinson’s disease. Journal of Biomedicine & Biotechnology, 2012, 845618.

    Article  CAS  Google Scholar 

  • Boddaert, N., Le Quan Sang, K. H., Rötig, A., Leroy-Willig, A., Gallet, S., Brunelle, F., et al. (2007). Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood, 110, 401–408.

    Article  CAS  PubMed  Google Scholar 

  • Bonner, J. M., & Boulianne, G. L. (2011). Drosophila as a model to study age-related neurodegenerative disorders: Alzheimer’s disease. Experimental Gerontology, 46, 335–339.

    Article  CAS  PubMed  Google Scholar 

  • Bose, A., & Beal, M. F. (2016). Mitochondrial dysfunction in Parkinson’s disease. Journal of Neurochemistry, 139, 216–231.

    Article  CAS  PubMed  Google Scholar 

  • Bourgognon, J.-M., & Steinert, J. R. (2019). The metabolome identity: basis for discovery of biomarkers in neurodegeneration. Neural Regeneration Research, 14, 387–390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Briffa, M., Ghio, S., Neuner, J., Gauci, A. J., Cacciottolo, R., Marchal, C., et al. (2017). Extracts from two ubiquitous Mediterranean plants ameliorate cellular and animal models of neurodegenerative proteinopathies. Neuroscience Letters, 638, 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Caesar, I., Jonson, M., Peter Nilsson, K. R., Thor, S., & Hammarströ, P. (2012). Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic Drosophila. PLoS One, 7, 31424.

    Article  CAS  Google Scholar 

  • Calap-Quintana, P., Soriano, S., Llorens, J. V., Al-Ramahi, I., Botas, J., Moltó, M. D., et al. (2015). TORC1 inhibition by rapamycin promotes antioxidant defences in a Drosophila model of Friedreich’s ataxia. PLoS One, 10, e0132376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calap-Quintana, P., González-Fernández, J., Sebastiá-Ortega, N., Llorens, J. V., & Moltó, M. D. (2017). Drosophila melanogaster models of metal-related human diseases and metal toxicity. International Journal of Molecular Sciences, 18, e1456.

    Article  PubMed  CAS  Google Scholar 

  • Calap-Quintana, P., Navarro, J. A., González-Fernández, J., Martínez-Sebastián, M. J., Moltó, M. D., & Llorens, J. V. (2018). Drosophila melanogaster models of Friedreich’s ataxia. BioMed Research International, 2018, 5065190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campesan, S., Green, E. W., Breda, C., Sathyasaikumar, K. V., Muchowski, P. J., Schwarcz, R., et al. (2011). The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Current Biology, 21, 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Campuzano, V., Montermini, L., Moltò, M. D., Pianese, L., Cossée, M., Cavalcanti, F., et al. (1996). Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 271, 1423–1427.

    Article  CAS  PubMed  Google Scholar 

  • Campuzano, V., Montermini, L., Lutz, Y., Cova, L., Hindelang, C., Jiralerspong, S., et al. (1997). Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Human Molecular Genetics, 6, 1771–1780.

    Article  CAS  PubMed  Google Scholar 

  • Casani, S., Gómez-Pastor, R., Matallana, E., & Paricio, N. (2013). Antioxidant compound supplementation prevents oxidative damage in a Drosophila model of Parkinson’s disease. Free Radical Biology & Medicine, 61, 151–160.

    Article  CAS  Google Scholar 

  • Caygill, E. E., & Brand, A. H. (2016). The GAL4 system: A versatile system for the manipulation and analysis of gene expression. Methods in Molecular Biology, 1478, 33–52.

    Article  CAS  PubMed  Google Scholar 

  • Cha, J. H. (2000). Transcriptional dysregulation in Huntington’s disease. Trends in Neurosciences, 23, 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, R., Vepuri, V., Mhatre, S. D., Paddock, B. E., Miller, S., Michelson, S. J., et al. (2011). Characterization of a Drosophila Alzheimer’s disease model: Pharmacological rescue of cognitive defects. Feany MB, editor. PLoS One, 6, e20799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charvin, D., Medori, R., Hauser, R. A., & Rascol, O. (2018). Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nature Reviews. Drug Discovery, 17, 804–822.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Wu, D., Ding, X., & Ying, W. (2015). SIRT2 is required for lipopolysaccharide-induced activation of BV2 microglia. NeuroReport, 26, 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.-D., Zhang, B., Wang, Y., Li, H., Xiong, R., Zhao, Z., et al. (2016a). Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models. Drug Design, Development and Therapy, 10, 1335–1343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, K., Ho, T. S.-Y., Lin, G., Tan, K. L., Rasband, M. N., & Bellen, H. J. (2016b). Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals. eLife, 5, e20732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, K., Lin, G., Haelterman, N. A., Ho, T. S.-Y., Li, T., Li, Z., et al. (2016c). Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration. eLife, 5, e16043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chongtham, A., & Agrawal, N. (2016). Curcumin modulates cell death and is protective in Huntington’s disease model. Scientific Reports, 6, 1–10.

    Article  CAS  Google Scholar 

  • Clinical, D. F. M., & Genetics, I. I. (1997). Huntington’s disease: from the gene to pathophysiology. The American Journal of Psychiatry, 154, 1046–1046.

    Article  Google Scholar 

  • Collier, T. J., Srivastava, K. R., Justman, C., Grammatopoulous, T., Hutter-Paier, B., Prokesch, M., et al. (2017). Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form. Neurobiology of Disease, 106, 191–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooley, L., Kelley, R., & Spradling, A. (1988). Insertional mutagenesis of the Drosophila genome with single P elements. Science (80- ), 239, 1121–1128.

    Article  CAS  Google Scholar 

  • Costa, R., Speretta, E., Crowther, D. C., & Cardoso, I. (2011). Testing the therapeutic potential of doxycycline in a Drosophila melanogaster model of Alzheimer disease. The Journal of Biological Chemistry, 286, 41647–41655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson, T. M., Golde, T. E., & Lagier-Tourenne, C. (2018). Animal models of neurodegenerative diseases. Nature Neuroscience, 21, 1370–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cristo, F., Finicelli, M., Digilio, F. A., Paladino, S., Valentino, A., Scialò, F., et al. (2018). Meldonium improves Huntington’s disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor γ coactivator 1α expression. Journal of Cellular Physiology, 234, 1–14.

    Google Scholar 

  • Doumanis, J., Wada, K., Kino, Y., Moore, A. W., & Nukina, N. (2009). RNAi screening in Drosophila cells identifies new modifiers of mutant huntingtin aggregation. Feany MB, editor. PLoS One, 4, e7275.

    PubMed  PubMed Central  Google Scholar 

  • Durães, F., Pinto, M., & Sousa, E. (2018). Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals, 11, E44.

    Article  PubMed  CAS  Google Scholar 

  • Dzitoyeva, S., Dimitrijevic, N., & Manev, H. (2003). Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proceedings of the National Academy of Sciences of the United States of America, 100, 5485–5490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edenharter, O., Schneuwly, S., & Navarro, J. A. (2018). Mitofusin-dependent ER stress triggers glial dysfunction and nervous system degeneration in a Drosophila model of Friedreich’s ataxia. Frontiers in Molecular Neuroscience, 11, 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elfawy, H. A., & Das, B. (2018). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sciences, 218, 165–184.

    Article  PubMed  CAS  Google Scholar 

  • Elincx-Benizri, S., Glik, A., Merkel, D., Arad, M., Freimark, D., Kozlova, E., et al. (2016). Clinical experience with deferiprone treatment for Friedreich ataxia. Journal of Child Neurology, 31, 1036–1040.

    Article  PubMed  Google Scholar 

  • Fan, R., Xu, F., Lou, P. M., Davis, J., Grande, A. M., Robinson, J. K., et al. (2007). Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. The Journal of Neuroscience, 27, 3057–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farlow, J., Pankratz, N. D., Wojcieszek, J., & Foroud, T. (2014). Parkinson disease overview. In GeneReviews. Seattle: University of Washington.

    Google Scholar 

  • Feala, J. D., Omens, J. H., Paternostro, G., & McCulloch, A. D. (2008). Discovering regulators of the Drosophila cardiac hypoxia response using automated phenotyping technology. Annals of the New York Academy of Sciences, 1123(1), 169–177

    Google Scholar 

  • Fernández-Hernández, I., Scheenaard, E., Pollarolo, G., & Gonzalez, C. (2016). The translational relevance of Drosophila in drug discovery. EMBO Reports, 17, 471–472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Lopez, A., Monferrer, L., Garcia-Alcover, I., Vicente-Crespo, M., Alvarez-Abril, M. C., & Artero, R. D. (2008). Genetic and chemical modifiers of a CUG toxicity model in Drosophila. PLoS One, 3, e1595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gargano, J. W., Martin, I., Bhandari, P., & Grotewiel, M. S. (2005). Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Experimental Gerontology, 40, 386–395.

    Article  PubMed  Google Scholar 

  • Ghaemi, R., Arefi, P., Stosic, A., Acker, M., Raza, Q., Roger Jacobs, J., et al. (2017). A microfluidic microinjector for toxicological and developmental studies in Drosophila embryos. Lab on a Chip, 17, 3898–3908.

    Article  CAS  PubMed  Google Scholar 

  • González-Cabo, P., & Palau, F. (2013). Mitochondrial pathophysiology in Friedreich’s ataxia. Journal of Neurochemistry, 126(Suppl), 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Gratz, S. J., Rubinstein, C. D., Harrison, M. M., Wildonger, J., & O’Connor-Giles, K. M. (2015). CRISPR-Cas9 genome editing in Drosophila. In Current Protocols in Molecular Biology (pp. 31.2.1–31.2.20). Hoboken: Wiley.

    Google Scholar 

  • Han, T. H. L., Camadro, J. M., Santos, R., Lesuisse, E., El Hage Chahine, J. M., & Ha-Duong, N. T. (2017). Mechanisms of iron and copper–frataxin interactions. Metallomics, 9, 1073–1085.

    Article  CAS  PubMed  Google Scholar 

  • Harding, A. E. (1993). Clinical features and classification of inherited ataxias. Advances in Neurology, 61, 1–14.

    CAS  PubMed  Google Scholar 

  • Hargreaves, I. P. (2014). Coenzyme Q10 as a therapy for mitochondrial disease. The International Journal of Biochemistry & Cell Biology, 49, 105–111.

    Article  CAS  Google Scholar 

  • Heckscher, E. S., Lockery, S. R., & Doe, C. Q. (2012). Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. The Journal of Neuroscience, 32, 12460–12471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman, R., Sinani, J., & Pendleton, R. (2012). The role of the GABA(B) receptor and calcium channels in a Drosophila model of Parkinson’s Disease. Neuroscience Letters, 516, 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Hummel, T., & Klämbt, C. (2008). P-element mutagenesis. Methods in Molecular Biology, 420, 97–117.

    Article  CAS  PubMed  Google Scholar 

  • Inamdar, A. A., Chaudhuri, A., & O’Donnell, J. (2012). The protective effect of minocycline in a paraquat-induced Parkinsons disease model in Drosophila is modified in altered genetic backgrounds. Parkinson’s Disease, 2012, 1–16.

    Article  CAS  Google Scholar 

  • Jackson, G. R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P. W., et al. (1998). Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron, 21, 633–642.

    Article  CAS  PubMed  Google Scholar 

  • Joe, E.-H., Choi, D.-J., An, J., Eun, J.-H., Jou, I., & Park, S. (2018). Astrocytes, microglia, and Parkinson’s disease. Experimental Neurobiologyl [Internet], 27 , 77–87.

    Google Scholar 

  • Kaltenbach, L. S., Romero, E., Becklin, R. R., Chettier, R., Bell, R., Phansalkar, A., et al. (2007). Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genetics, 3, e82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kavi, H. H., Fernandez, H., Xie, W., & Birchler, J. A. (2008). Genetics and biochemistry of RNAi in Drosophila. Current Topics in Microbiology and Immunology, 320, 37–75.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Vaish, M., & Ratan, R. R. (2014). Transcriptional dysregulation in Huntington’s disease: a failure of adaptive transcriptional homeostasis. Drug Discovery Today, 19, 956–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrechts, R., Faber, A., & Sibon, O. (2017). Modelling in miniature: Using Drosophila melanogaster to study human neurodegeneration. Drug Discovery Today: Disease Models, 25–26, 3–10.

    Google Scholar 

  • Landles, C., & Bates, G. P. (2004). Huntingtin and the molecular pathogenesis of Huntington’s disease. EMBO Reports, 5, 958–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langedijk, J., Mantel-Teeuwisse, A. K., Slijkerman, D. S., & Schutjens, M.-H. D. B. (2015). Drug repositioning and repurposing: terminology and definitions in literature. Drug Discovery Today, 20, 1027–1034.

    Article  PubMed  Google Scholar 

  • Lavara-Culebras, E., Muñoz-Soriano, V., Gómez-Pastor, R., Matallana, E., & Paricio, N. (2010). Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1beta mutants. Gene, 462, 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. K., & Boelsterli, U. A. (2014). Bypassing the compromised mitochondrial electron transport with methylene blue alleviates efavirenz/isoniazid-induced oxidant stress and mitochondria-mediated cell death in mouse hepatocytes. Redox Biology, 2, 599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, W.-C. M., Yoshihara, M., & Littleton, J. T. (2004). Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 3224–3229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenaz, G., Fato, R., Genova, M. L., Bergamini, C., Bianchi, C., & Biondi, A. (2006). Mitochondrial Complex I: structural and functional aspects. Biochimica et Biophysica Acta, 1757, 1406–1420.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Karlovich, C. A., Fish, M. P., Scott, M. P., & Myers, R. M. (1999). A putative Drosophila homolog of the Huntington’s disease gene. Human Molecular Genetics, 8, 1807–1815.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Chaney, S., Roberts, I. J., Forte, M., & Hirsh, J. (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Current Biology, 10, 211–214.

    Article  CAS  PubMed  Google Scholar 

  • Lill, C. M. (2016). Genetics of Parkinson’s disease. Molecular and Cellular Probes, 30, 386–396.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.-H., Lin, H.-I., Chen, M.-L., Lai, T.-T., Cao, L.-P., Farrer, M. J., et al. (2016). Lovastatin protects neurite degeneration in LRRK2-G2019S parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3β activity. Human Molecular Genetics, 25, 1965–1978.

    Article  CAS  PubMed  Google Scholar 

  • Linford, N. J., Bilgir, C., Ro, J., & Pletcher, S. D. (2013). Measurement of lifespan in Drosophila melanogaster. Journal of Visualized Experiments, 71, 50068.

    Google Scholar 

  • Liu, Z., Li, X., Simoneau, A. R., Jafari, M., & Zi, X. (2012). Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Molecular Carcinogenesis, 51, 257–267.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q. F., Lee, J. H., Kim, Y.-M., Lee, S., Hong, Y. K., Hwang, S., et al. (2015). In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease. Biological & Pharmaceutical Bulletin, 38, 1891–1901.

    Article  CAS  Google Scholar 

  • Llorens, J. V., Navarro, J. A., Martínez-Sebastián, M. J., Baylies, M. K., Schneuwly, S., Botella, J. A., et al. (2007). Causative role of oxidative stress in a Drosophila model of Friedreich ataxia. The FASEB Journal, 21, 333–344.

    Article  CAS  PubMed  Google Scholar 

  • Ma, W.-W., Tao, Y., Wang, Y.-Y., & Peng, I.-F. (2017). Effects of Gardenia jasminoides extracts on cognition and innate immune response in an adult Drosophila model of Alzheimer’s disease. Chinese Journal of Natural Medicines, 15, 899–904.

    Article  PubMed  Google Scholar 

  • Maheshwari, M., Bhutani, S., Das, A., Mukherjee, R., Sharma, A., Kino, Y., et al. (2014). Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington’s disease. Human Molecular Genetics, 23, 2737–2751.

    Article  CAS  PubMed  Google Scholar 

  • Maio, N., & Rouault, T. A. (2015). Iron-sulfur cluster biogenesis in mammalian cells: New insights into the molecular mechanisms of cluster delivery. Biochimica et Biophysica Acta, 1853, 1493–1512.

    Article  CAS  PubMed  Google Scholar 

  • Manev, H., Dimitrijevic, N., & Dzitoyeva, S. (2003). Techniques: fruit flies as models for neuropharmacological research. Trends in Pharmacological Sciences, 24, 41–43.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, A., & Puccio, H. (2014). Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation. Frontiers in Pharmacology, 5, 130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason, R. P., Casu, M., Butler, N., Breda, C., Campesan, S., Clapp, J., et al. (2013). Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nature Genetics, 45, 1249–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGurk, L., Berson, A., & Bonini, N. M. (2015). Drosophila as an in vivo model for human neurodegenerative disease. Genetics, 201, 377–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKoy, A. F., Chen, J., Schupbach, T., & Hecht, M. H. (2012). A novel inhibitor of amyloid β (Aβ) peptide aggregation: from high throughput screening to efficacy in an animal model of Alzheimer disease. The Journal of Biological Chemistry, 287, 38992–39000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melkani, G. C., Trujillo, A. S., Ramos, R., Bodmer, R., Bernstein, S. I., & Ocorr, K. (2013). Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genetics, 9, e1004024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitsui, J., & Tsuji, S. (2014). Genomic aspects of sporadic neurodegenerative diseases. Biochemical and Biophysical Research Communications, 452, 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Mobarra, N., Shanaki, M., Ehteram, H., Nasiri, H., Sahmani, M., Saeidi, M., et al. (2016). A review on iron chelators in treatment of iron overload syndromes. International Journal of Hematology-Oncology and Stem Cell Research, 10, 239–247.

    PubMed  PubMed Central  Google Scholar 

  • Muñoz-Soriano, V., & Paricio, N. (2007). Overexpression of Septin 4, the Drosophila homologue of human CDCrel-1, is toxic for dopaminergic neurons. The European Journal of Neuroscience, 26, 3150–3158.

    Article  PubMed  Google Scholar 

  • Neal, M., & Richardson, J. R. (2018). Time to get personal: A framework for personalized targeting of oxidative stress in neurotoxicity and neurodegenerative disease. Current Opinion in Toxicology, 7, 127–132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neckameyer, W. S., & Bhatt, P. (2016). Protocols to study behavior in Drosophila. In C. Dahman (Ed.), Methods in molecular biology (pp. 303–320). New York: Human Press.

    Google Scholar 

  • Neri, C. (2011). Value of invertebrate genetics and biology to develop neuroprotective and preventive medicine in Huntington’s disease. In D. C. Lo & R. E. Hughes (Eds.), Neurobiology of Huntington’s disease: Applications to drug discovery. Boca Raton: CRC Press/Taylor & Francis.

    Google Scholar 

  • Ng, C.-H., Hang, L., & Lim, K.-L. (2017a). Mitochondrial homeostasis in Parkinson’s disease - a triumvirate rule? Neural Regeneration Research, 12, 1270–1272.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng, C.-H., Basil, A. H., Hang, L., Tan, R., Goh, K.-L., O’Neill, S., et al. (2017b). Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson’s disease. Neurobiology of Aging, 55, 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T. T., Vuu, M. D., Huynh, M. A., Yamaguchi, M., Tran, L. T., & Dang, T. P. T. (2018). Curcumin Effectively Rescued Parkinson’s Disease-Like Phenotypes in a Novel Drosophila melanogaster Model with dUCH Knockdown. Oxidative Medicine and Cellular Longevity, 2018, 2038267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols, C. D., Becnel, J., & Pandey, U. B. (2012). Methods to assay Drosophila behavior. Journal of Visualized Experiments, 61, 3795.

    Google Scholar 

  • Ortner, N. J., & Striessnig, J. (2016). L-type calcium channels as drug targets in CNS disorders. Channels (Austin, Tex.), 10, 7–13.

    Article  Google Scholar 

  • Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., et al. (2007). Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science (80- ), 317, 516–519.

    Article  CAS  Google Scholar 

  • Palandri, A., Martin, E., Russi, M., Rera, M., Hervétricoire, H., & Monnier, V. V. (2018). Identification of cardioprotective drugs by medium-scale in vivo pharmacological screening on a Drosophila cardiac model of Friedreich’s ataxia. Disease Models & Mechanisms, 11, dmm033811.

    Article  CAS  Google Scholar 

  • Panchal, K., & Tiwari, A. K. (2017). Drosophila melanogaster “a potential model organism” for identification of pharmacological properties of plants/plant-derived components. Biomedicine & Pharmacotherapy, 89, 1331–1345.

    Article  CAS  Google Scholar 

  • Panchal, K., & Tiwari, A. K. (2018). Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion, 47, S1567.

    PubMed  Google Scholar 

  • Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews, 63, 411–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandolfo, M., Arpa, J., Delatycki, M. B., Le Quan Sang, K. H., Mariotti, C., Munnich, A., et al. (2014). Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Annals of Neurology, 76, 509–521.

    Article  CAS  PubMed  Google Scholar 

  • Perry, V. H. (2012). Innate inflammation in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2, a009373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pineda, M., Arpa, J., Montero, R., Aracil, A., Domínguez, F., Galván, M., et al. (2008). Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. European Journal of Paediatric Neurology, 12, 470–475.

    Article  PubMed  Google Scholar 

  • Poetini, M. R., Araujo, S. M., Trindade de Paula, M., Bortolotto, V. C., Meichtry, L. B., Polet de Almeida, F., et al. (2018). Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chemico-Biological Interactions, 279, 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy, S., McBride, J. L., & Kordower, J. H. (2007). Animal models of Huntington’s disease. ILAR Journal, 48, 356–373.

    Article  CAS  PubMed  Google Scholar 

  • Rand, M. D. (2010). Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicology and Teratology, 32, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Rasool, M., Malik, A., Qureshi, M. S., Manan, A., Pushparaj, P. N., Asif, M., et al. (2014). Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evidence-based Complementary and Alternative Medicine, 2014, 979730.

    PubMed  PubMed Central  Google Scholar 

  • Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genetics, 36, 585–595.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, F. B., Duarte, G. S., Costa, J., Ferreira, J. J., & Wild, E. J. (2017). Tetrabenazine versus deutetrabenazine for Huntington’s disease: Twins or distant vousins? Movement Disorders Clinical Practice, 4, 582–585.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero, E., Cha, G. H., Verstreken, P., Ly, C. V., Hughes, R. E., Bellen, H. J., et al. (2008). Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length huntingtin accumulating in the cytoplasm. Neuron, 57, 27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas-Arellano, A., Estrada-Mondragón, A., Piña, R., Mantellero, C. A., & Castro, M. A. (2018). The tiny drosophila melanogaster for the biggest answers in huntington’s disease. International Journal of Molecular Sciences, 19, E2398.

    Article  PubMed  CAS  Google Scholar 

  • Salazar, C., Ruiz-Hincapie, P., & Ruiz, L. M. (2018). The Interplay among PINK1/PARKIN/Dj-1 Network during Mitochondrial Quality Control in Cancer Biology: Protein Interaction Analysis. Cell, 7, E154.

    Article  CAS  Google Scholar 

  • Samii, A., Nutt, J. G., & Ransom, B. R. (2004). Parkinson’s disease. Lancet, 363, 1783–1793.

    Article  CAS  PubMed  Google Scholar 

  • Santos, R., Lefevre, S., Sliwa, D., Seguin, A., Camadro, J.-M., & Lesuisse, E. (2010). Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxidants & Redox Signaling, 13, 651–690.

    Article  CAS  Google Scholar 

  • Sanz, F. J., Solana-manrique, C., Muñoz-soriano, V., Calap-quintana, P., Moltó, M. D., & Paricio, N. (2017). Identification of potential therapeutic compounds for Parkinson’s disease using Drosophila and human cell models. Free Radical Biology & Medicine, 108, 683–691.

    Article  CAS  Google Scholar 

  • Sawin-McCormack, E. P., Sokolowski, M. B., & Campos, A. R. (1995). Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development. Journal of Neurogenetics, 10, 119–135.

    Article  CAS  PubMed  Google Scholar 

  • Seguin, A., Monnier, V., Palandri, A., Bihel, F., Rera, M., Schmitt, M., et al. (2015). A Yeast/Drosophila screen to identify new compounds overcoming frataxin deficiency. Oxidative Medicine and Cellular Longevity, 2015, 1–10.

    Article  CAS  Google Scholar 

  • Shankar, G. M., & Walsh, D. M. (2009). Alzheimer’s disease: synaptic dysfunction and Abeta. Molecular Neurodegeneration, 4, 48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddique, Y. H., & Ali, F. (2017). Protective effect of nordihydroguaiaretic acid (NDGA) on the transgenic Drosophila model of Alzheimer’s disease. Chemico-Biological Interactions, 269, 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Singh, Y. P., Pandey, A., & Vishwakarma, S. (2018). Modi G. Mol Divers: A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases.

    Google Scholar 

  • Sohn, Y.-S., Breuer, W., Munnich, A., & Cabantchik, Z. I. (2008). Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood, 111, 1690–1699.

    Article  CAS  PubMed  Google Scholar 

  • Soriano, S., Llorens, J. V., Blanco-Sobero, L., Gutiérrez, L., Calap-Quintana, P., Morales, M. P., et al. (2013). Deferiprone and idebenone rescue frataxin depletion phenotypes in a Drosophila model of Friedreich’s ataxia. Gene, 521, 274–281.

    Article  CAS  PubMed  Google Scholar 

  • Soriano, S., Calap-Quintana, P., Llorens, J. V., Al-Ramahi, I., Gutiérrez, L., Martínez-Sebastián, M. J., et al. (2016). Metal homeostasis regulators suppress FRDA phenotypes in a Drosophila model of the disease. PLoS One, 11, e0159209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastav, S., Fatima, M., & Mondal, A. C. (2018). Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization. Neurochemistry International, 121, 98–107.

    Article  CAS  PubMed  Google Scholar 

  • Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 413, 739–743.

    Article  CAS  PubMed  Google Scholar 

  • Stephenson, R., & Metcalfe, N. (2013). Drosophila melanogaster: A fly through its history and current use. The Journal of the Royal College of Physicians of Edinburgh, 43, 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Strange, K. (2016). Drug discovery in fish, flies, and worms. ILAR Journal, 57, 133–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Styczyńska-Soczka, K., Zechini, L., & Zografos, L. (2017). Validating the predicted effect of astemizole and ketoconazole using a Drosophila model of Parkinson’s disease. Assay and Drug Development Technologies, 15, 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam, S. R., & Federoff, H. J. (2017). Targeting microglial activation states as a therapeutic avenue in Parkinson’s disease. Frontiers in Aging Neuroscience, 9, 176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugars, K. L., & Rubinsztein, D. C. (2003). Transcriptional abnormalities in Huntington disease. Trends in Genetics, 19, 233–238.

    Article  CAS  PubMed  Google Scholar 

  • Sun, A.-G., Lin, A.-Q., Huang, S.-Y., Huo, D., & Cong, C.-H. (2016). Identification of potential drugs for Parkinson’s disease based on a sub-pathway method. The International Journal of Neuroscience, 126, 318–325.

    Article  CAS  PubMed  Google Scholar 

  • Sunderhaus, E. R., & Kretzschmar, D. (2016). Mass histology to quantify neurodegeneration in Drosophila. Journal of Visualized Experiments. https://doi.org/10.3791/54809.

  • Swinney, D. C., & Anthony, J. (2011). How were new medicines discovered? Nature Reviews. Drug Discovery, 10, 507–519.

    Article  CAS  PubMed  Google Scholar 

  • Tan, F. H. P., & Azzam, G. (2017). Drosophila melanogaster: Deciphering Alzheimer’s disease. Malaysian Journal of Medical Sciences, 24, 6–20.

    Article  Google Scholar 

  • Tan, S. H., Karri, V., Tay, N. W. R., Chang, K. H., Ah, H. Y., Ng, P. Q., et al. (2019). Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomedicine & Pharmacotherapy, 111, 765–777.

    Article  CAS  Google Scholar 

  • Tang, M., & Taghibiglou, C. (2017). The mechanisms of action of curcumin in Alzheimer’s disease. Journal of Alzheimer’s Disease, 58, 1003–1016.

    Article  CAS  PubMed  Google Scholar 

  • Tickoo, S., & Russell, S. (2002). Drosophila melanogaster as a model system for drug discovery and pathway screening. Current Opinion in Pharmacology, 2, 555–560.

    Article  CAS  PubMed  Google Scholar 

  • Tricoire, H., Palandri, A., Bourdais, A., Camadro, J.-M., & Monnier, V. (2014). Methylene blue rescues heart defects in a Drosophila model of Friedreich’s ataxia. Human Molecular Genetics, 23, 968–979.

    Article  CAS  PubMed  Google Scholar 

  • Vanhauwaert, R., & Verstreken, P. (2015). Flies with Parkinson’s disease. Experimental Neurology, 274, 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Velasco-Sánchez, D., Aracil, A., Montero, R., Mas, A., Jiménez, L., O’Callaghan, M., et al. (2011). Combined therapy with idebenone and deferiprone in patients with Friedreich’s ataxia. Cerebellum, 10, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Volochnyuk, D. M., Ryabukhin, S. V., Moroz, Y. S., Savych, O., Chuprina, A., Horvath, D., et al. (2018). Evolution of commercially available compounds for HTS. Drug Discovery Today, 24, 390–402.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Chiang, H.-C., Wu, W., Liang, B., Xie, Z., Yao, X., et al. (2012). Epidermal growth factor receptor is a preferred target for treating Amyloid- -induced memory loss. Proceedings of the National Academy of Sciences, 109, 16743–16748.

    Article  CAS  Google Scholar 

  • Wang, X., Kim, J.-R., Lee, S.-B., Kim, Y.-J., Jung, M. Y., Kwon, H.-W., et al. (2014). Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complementary and Alternative Medicine, 14, 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, X., Perumalsamy, H., Kwon, H. W., Na, Y. E., & Ahn, Y. J. (2015). Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer’s disease. Scientific Reports, 5, 16127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegant, F. A. C., Surinova, S., Ytsma, E., Langelaar-Makkinje, M., Wikman, G., & Post, J. A. (2009). Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology, 10, 27–42.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Shih, H.-P., Vigont, V., Hrdlicka, L., Diggins, L., Singh, C., et al. (2011). Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington’s disease treatment. Chemistry & Biology, 18, 777–793.

    Article  CAS  Google Scholar 

  • Wu, Z., Wu, A., Dong, J., Sigears, A., & Lu, B. (2018). Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson’s disease through activation of mitophagy. Experimental Gerontology, 113, 10–17.

    Article  CAS  PubMed  Google Scholar 

  • Yao, J., Zhang, B., Ge, C., Peng, S., & Fang, J. (2015). Xanthohumol, a polyphenol chalcone present in hops, activating Nrf2 enzymes to confer protection against oxidative damage in PC12 cells. Journal of Agricultural and Food Chemistry, 63, 1521–1531.

    Article  CAS  PubMed  Google Scholar 

  • Yedlapudi, D., Joshi, G. S., Luo, D., Todi, S. V., & Dutta, A. K. (2016). Inhibition of alpha-synuclein aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay and an in vivo Drosophila synucleinopathy model. Scientific Reports, 6, 38510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yiannopoulou, K. G., & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6, 19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, Y. I., Bassit, B., Zhu, L., Yang, X., Wang, C., & Li, Y.-M. (2007). Gamma-secretase substrate concentration modulates the Abeta42/Abeta40 ratio: Implications for Alzheimer disease. The Journal of Biological Chemistry, 282, 23639–23644.

    Article  CAS  PubMed  Google Scholar 

  • Zaichick, S. V., McGrath, K. M., & Caraveo, G. (2017). The role of Ca2+ signaling in Parkinson’s disease. Disease Models & Mechanisms, 10, 519–535.

    Article  CAS  Google Scholar 

  • Zappe, S., Fish, M., Scott, M. P., & Solgaard, O. (2006). Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens. Lab on a Chip, 6, 1012–1019.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Paricio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solana-Manrique, C., Moltó, M.D., Calap-Quintana, P., Sanz, F.J., Llorens, J.V., Paricio, N. (2019). Drosophila as a Model System for the Identification of Pharmacological Therapies in Neurodegenerative Diseases. In: Mutsuddi, M., Mukherjee, A. (eds) Insights into Human Neurodegeneration: Lessons Learnt from Drosophila. Springer, Singapore. https://doi.org/10.1007/978-981-13-2218-1_15

Download citation

Publish with us

Policies and ethics