Advertisement

The Role of Autophagy in Ischaemic Stroke: Friend or Foe?

  • Komal Saraswat
  • Raushan Kumar
  • Syed Ibrahim Rizvi
  • Abhishek Kumar Singh
Chapter

Abstract

Autophagy is an evolutionarily conserved process of cellular self-degradation and recycling of redundant cytoplasmic entities by lysosomal enzymes. Moreover, autophagy also plays critical roles in controlling several biochemical and molecular neuronal physiology such as growth, survival and metabolism. The autophagy process constantly occurs at basal level under normal physiological conditions and gets increased during stress conditions such as starvation and hypoxia. In neuronal cells, it is a vital homeostasis mechanism that helps in the maintenance of protein quality control. In various neurological disorders, several crucial pro-survival and anti-apoptotic effects of autophagy have been reported. However, the function of autophagy in ischaemic stroke (IS) is highly controversial and still debated. Some reports show that it protects neurons during IS, while others advocate it to be neurodegenerative. Thus, the present chapter deals with the possible function of autophagy in ischaemic stroke along with the discussion of various factors influencing the action of autophagy in ischaemic stroke.

Keywords

Autophagy Cerebral ischaemia Ischaemic penumbra Ischaemic stroke 

Notes

Acknowledgement

A. K. Singh would like to acknowledge University Grants Commission, New Delhi, India, for providing financial support (F.4-2/2006(BSR)/BL/14-15/0326).

References

  1. 1.
    Chu, C. T. (2008, February). Eaten alive. The American Journal of Pathology, 172(2), 284–287.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lakhan, S. E., Kirchgessner, A., & Hofer, M. (2009). Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. Journal of Translational Medicine, 7(1), 97.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Cowan, F., Rutherford, M., Groenendaal, F., Eken, P., Mercuri, E., Bydder, G. M., et al. (2003, March). Origin and timing of brain lesions in term infants with neonatal encephalopathy. The Lancet, 361(9359), 736–742.Google Scholar
  4. 4.
    Block, F. (1999, June). Global ischemia and behavioural deficits. Progress in Neurobiology, 58(3), 279–295.PubMedGoogle Scholar
  5. 5.
    Ouyang, Y. B., & Giffard, R. G. (2012). ER-mitochondria crosstalk during cerebral ischemia: Molecular chaperones and ER-mitochondrial calcium transfer. International Journal of Cell Biology, 2012, 1–8.Google Scholar
  6. 6.
    Carron, S. F., Alwis, D. S., & Rajan, R. (2016, June). Traumatic brain injury and neuronal functionality changes in sensory cortex. Frontiers in Systems Neuroscience, 10, 47. Available from: http://journal.frontiersin.org/Article/10.3389/fnsys.2016.00047/abstractGoogle Scholar
  7. 7.
    Petty, G. W., Brown, R. D., Whisnant, J. P., Sicks, J. D., O’Fallon, W. M., & Wiebers, D. O. (2000, May 1). Ischemic stroke subtypes: A population-based study of functional outcome, survival, and recurrence. Stroke, 31(5), 1062–1068.PubMedGoogle Scholar
  8. 8.
    Sanganalmath, S. K., Gopal, P., Parker, J. R., Downs, R. K., Parker, J. C., & Dawn, B. (2017, February). Global cerebral ischemia due to circulatory arrest: Insights into cellular pathophysiology and diagnostic modalities. Molecular and Cellular Biochemistry, 426(1–2), 111–127.PubMedGoogle Scholar
  9. 9.
    Ye, Y., Perez-Polo, J. R., & Birnbaum, Y. (2010, October). Protecting against ischemia-reperfusion injury: Antiplatelet drugs, statins, and their potential interactions: Ye et al. The Annals of the New York Academy of Sciences, 1207(1), 76–82.PubMedGoogle Scholar
  10. 10.
    Balucani, C., Levine, S. R., Khoury, J. C., Khatri, P., Saver, J. L., & Broderick, J. P. (2016, April). Acute ischemic stroke with very early clinical improvement: A National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator stroke trials exploratory analysis. Journal of Stroke and Cerebrovascular Diseases, 25(4), 894–901.PubMedGoogle Scholar
  11. 11.
    Barreto, A. D., Fanale, C. V., Alexandrov, A. V., Gaffney, K. C., Vahidy, F. S., Nguyen, C. B., et al. (2016, August). Prospective, open-label safety study of intravenous recombinant tissue plasminogen activator in wake-up stroke: Safety study of wake-up stroke thrombolysis. Annals of Neurology, 80(2), 211–218.PubMedGoogle Scholar
  12. 12.
    Green, A. R., & Shuaib, A. (2006, August). Therapeutic strategies for the treatment of stroke. Drug Discovery Today, 11(15–16), 681–693.PubMedGoogle Scholar
  13. 13.
    Fisher, M. (2011, January 1). New approaches to neuroprotective drug development. Stroke, 42, S24–S27.PubMedGoogle Scholar
  14. 14.
    Dirnagl, U., Iadecola, C., & Moskowitz, M. A. (1999, September). Pathobiology of ischaemic stroke: An integrated view. Trends in Neurosciences, 22(9), 391–397.PubMedGoogle Scholar
  15. 15.
    Mongin, A. A. (2007, December). Disruption of ionic and cell volume homeostasis in cerebral ischemia: The perfect storm. Pathophysiology, 14(3–4), 183–193.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Simard, J. M., Kent, T. A., Chen, M., Tarasov, K. V., & Gerzanich, V. (2007, March). Brain oedema in focal ischaemia: Molecular pathophysiology and theoretical implications. The Lancet Neurology, 6(3), 258–268.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen, H., Yoshioka, H., Kim, G. S., Jung, J. E., Okami, N., Sakata, H., et al. (2011, April 15). Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection. Antioxidants & Redox Signaling, 14(8), 1505–1517.Google Scholar
  18. 18.
    Sanderson, T. H., Reynolds, C. A., Kumar, R., Przyklenk, K., & Hüttemann, M. (2013, February). Molecular mechanisms of ischemia–reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Molecular Neurobiology, 47(1), 9–23.PubMedGoogle Scholar
  19. 19.
    Deb, P., Sharma, S., & Hassan, K. M. (2010, June). Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology, 17(3), 197–218.Google Scholar
  20. 20.
    Ford, A. L., An, H., Vo, K. D., Lin, W., & Lee, J.-M. (2012, June). Defining the ischemic penumbra using hyperacute neuroimaging: Deriving quantitative ischemic thresholds. Translational Stroke Research, 3(2), 198–204.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kleinschnitz, C., Fluri, F., & Schuhmann, M. (2015). Animal models of ischemic stroke and their application in clinical research. Drug Design, Development and Therapy, 9, 3445.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Tamura, A., Graham, D. I., McCulloch, J., & Teasdale, G. M. (1981, March). Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. Journal of Cerebral Blood Flow & Metabolism, 1(1), 53–60.Google Scholar
  23. 23.
    Longa, E. Z., Weinstein, P. R., Carlson, S., & Cummins, R. (1989, January). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 20(1), 84–91.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Schmid Elsaesser, R., Zausinger, S., Hungerhuber, E., Baethmann, A., & Reulen, H. J. (1998, October). A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: Evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke, 29(10), 2162–2170.PubMedGoogle Scholar
  25. 25.
    Belayev, L., Alonso, O. F., Busto, R., Zhao, W., Ginsberg, M. D., & Hsu, C. Y. (1996, September 1). Middle cerebral artery occlusion in the rat by intraluminal suture: Neurological and pathological evaluation of an improved model. Stroke, 27(9), 1616–1623.PubMedGoogle Scholar
  26. 26.
    Howells, D. W., Porritt, M. J., Rewell, S. S., O’Collins, V., Sena, E. S., Van der Worp, H. B., et al. (2010, August). Different strokes for different folks: The rich diversity of animal models of focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 30(8), 1412–1431.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kuroiwa, T., Xi, G., Hua, Y., Nagaraja, T. N., Fenstermacher, J. D., & Keep, R. F. (2009, January 1). Development of a rat model of photothrombotic ischemia and infarction within the caudoputamen. Stroke, 40(1), 248–253.PubMedGoogle Scholar
  28. 28.
    Watson, B. D., Dietrich, W. D., Busto, R., Wachtel, M. S., & Ginsberg, M. D. (1985, May). Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals of Neurology, 17(5), 497–504.PubMedGoogle Scholar
  29. 29.
    Yanagisawa, M., Kurihara, H., Kimura, S., Goto, K., & Masaki, T. (1988, December). A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. Journal of Hypertension, 6(4), S188–S191.PubMedGoogle Scholar
  30. 30.
    Hughes, P. M., Anthony, D. C., Ruddin, M., Botham, M. S., Rankine, E. L., Sablone, M., et al. (2003, December). Focal lesions in the rat central nervous system induced by endothelin-1. Journal of Neuropathology and Experimental Neurology, 62(12), 1276–1286.PubMedGoogle Scholar
  31. 31.
    Frost, S. B., Barbay, S., Mumert, M. L., Stowe, A. M., & Nudo, R. J. (2006, May). An animal model of capsular infarct: Endothelin-1 injections in the rat. Behavioural Brain Research, 169(2), 206–211.PubMedGoogle Scholar
  32. 32.
    Albers, G. W. (1995, February). Antithrombotic agents in cerebral ischemia. The American Journal of Cardiology, 75(6), 34B–38B.PubMedGoogle Scholar
  33. 33.
    DiNapoli, V. A., Rosen, C. L., Nagamine, T., & Crocco, T. (2006, June). Selective MCA occlusion: A precise embolic stroke model. Journal of Neuroscience Methods, 154(1–2), 233–238.PubMedGoogle Scholar
  34. 34.
    Zhang, Z., Zhang, R. L., Jiang, Q., Raman, S. B. K., Cantwell, L., & Chopp, M. (1997, February). A new rat model of thrombotic focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 17(2), 123–135.PubMedGoogle Scholar
  35. 35.
    Orset, C., Macrez, R., Young, A. R., Panthou, D., Angles-Cano, E., Maubert, E., et al. (2007, October 1). Mouse model of in situ thromboembolic stroke and reperfusion. Stroke, 38(10), 2771–2778.Google Scholar
  36. 36.
    Overgaard, K., Sereghy, T., Pedersen, H., & Boysen, G. (1994, May). Effect of delayed thrombolysis with rt-PA in a rat embolic stroke model. Journal of Cerebral Blood Flow and Metabolism, 14(3), 472–477.PubMedGoogle Scholar
  37. 37.
    Zhang, L., Zhang, Z. G., Zhang, C., Zhang, R. L., & Chopp, M. (2004, November 11). Intravenous administration of a GPIIb/IIIa receptor antagonist extends the therapeutic window of intra-arterial tenecteplase-tissue plasminogen activator in a rat stroke model. Stroke, 35(12), 2890–2895.PubMedGoogle Scholar
  38. 38.
    Eskelinen, E. L. (2005, April). Maturation of autophagic vacuoles in mammalian cells. Autophagy, 1(1), 1–10.PubMedGoogle Scholar
  39. 39.
    Mijaljica, D., Prescott, M., & Devenish, R. J. (2011, July). Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy, 7(7), 673–682.PubMedGoogle Scholar
  40. 40.
    PeriyasamyThandavan, S., Jiang, M., Schoenlein, P., & Dong, Z. (2009, August). Autophagy: Molecular machinery, regulation, and implications for renal pathophysiology. The American Journal of Physiology - Renal Physiology, 297(2), F244–F256.Google Scholar
  41. 41.
    Kiffin, R. (2004, September 1). Activation of chaperone-mediated autophagy during oxidative stress. Molecular Biology of the Cell, 15(11), 4829–4840.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Glick, D., Barth, S., & Macleod, K. F. (2010, May). Autophagy: Cellular and molecular mechanisms. The Journal of Pathology., 221(1), 3–12.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Marzella, L., Ahlberg, J., & Glaumann, H. (1981). Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Archives B, Cell Pathology Including Molecular Pathology, 36(2–3), 219–234.Google Scholar
  44. 44.
    Klionsky, D. J. (2007, November). Autophagy: From phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937.PubMedGoogle Scholar
  45. 45.
    Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., et al. (2010, October 1). Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews, 90(4), 1383–1435.PubMedGoogle Scholar
  46. 46.
    Gabryel, B., Kost, A., & Kasprowska, D. (2012). Neuronal autophagy in cerebral ischemia – a potential target for neuroprotective strategies? Pharmacological Reports, 64(1), 1–15.PubMedGoogle Scholar
  47. 47.
    Carloni, S., Girelli, S., Scopa, C., Buonocore, G., Longini, M., & Balduini, W. (2010, April). Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy, 6(3), 366–377.PubMedGoogle Scholar
  48. 48.
    Singh, A. K., Kashyap, M. P., Tripathi, V. K., Singh, S., Garg, G., & Rizvi, S. I. (2016). Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Molecular Neurobiology. Available from: http://link.springer.com/10.1007/s12035-016-0129-3.
  49. 49.
    Wang, P., Guan, Y. F., Du, H., Zhai, Q. W., Su, D. F., & Miao, C. Y. (2012, January). Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 8(1), 77–87.PubMedGoogle Scholar
  50. 50.
    Adhami, F., Liao, G., Morozov, Y. M., Schloemer, A., Schmithorst, V. J., Lorenz, J. N., et al. (2006, August). Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. The American Journal of Pathology, 169(2), 566–583.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Li, J., & McCullough, L. D. (2010, March). Effects of AMP-activated protein kinase in cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 30(3), 480–492.PubMedGoogle Scholar
  52. 52.
    Koike, M., Shibata, M., Tadakoshi, M., Gotoh, K., Komatsu, M., Waguri, S., et al. (2008, February). Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. The American Journal of Pathology, 172(2), 454–469.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wen, Y. D., Sheng, R., Zhang, L. S., Han, R., Zhang, X., Zhang, X. D., et al. (2008, August 16). Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 4(6), 762–769.PubMedGoogle Scholar
  54. 54.
    Xin, X. Y., Pan, J., Wang, X. Q., Ma, J. F., Ding, J. Q., Yang, G. Y., et al. (2011, July). 2-methoxyestradiol attenuates autophagy activation after global ischemia. Canadian Journal of Neurological Sciences/Journal Canadien des Sciences Neurologiques, 38(04), 631–638.PubMedGoogle Scholar
  55. 55.
    Kang, C., & Avery, L. (2008, January). To be or not to be, the level of autophagy is the question: Dual roles of autophagy in the survival response to starvation. Autophagy, 4(1), 82–84.PubMedGoogle Scholar
  56. 56.
    Shi, R., Weng, J., Zhao, L., Li, X. M., Gao, T. M., & Kong, J. (2012, March). Excessive autophagy contributes to neuron death in cerebral ischemia: Autophagy in cerebral ischemia. CNS Neuroscience & Therapeutics, 18(3), 250–260.Google Scholar
  57. 57.
    Qin, A. P., Liu, C. F., Qin, Y. Y., Hong, L. Z., Xu, M., Yang, L., et al. (2010, August). Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy, 6(6), 738–753.PubMedGoogle Scholar
  58. 58.
    Tu, X., Yang, W., Chen, J., Chen, Y., Chen, Q., Chen, P., et al. (2015, April). Repetitive ischemic preconditioning attenuates inflammatory reaction and brain damage after focal cerebral ischemia in rats: Involvement of PI3K/Akt and ERK1/2 signaling pathway. Journal of Molecular Neuroscience, 55(4), 912–922.PubMedGoogle Scholar
  59. 59.
    Park, H. K., Chu, K., Jung, K. H., Lee, S. T., Bahn, J. J., Kim, M., et al. (2009, February). Autophagy is involved in the ischemic preconditioning. Neuroscience Letters, 451(1), 16–19.PubMedGoogle Scholar
  60. 60.
    Yan, W., Zhang, H., Bai, X., Lu, Y., Dong, H., & Xiong, L. (2011, July). Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Research, 1402, 109–121.PubMedGoogle Scholar
  61. 61.
    Carloni, S., Buonocore, G., & Balduini, W. (2008, December). Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury. Neurobiology of Disease, 32(3), 329–339.PubMedGoogle Scholar
  62. 62.
    Komatsu, M., Ueno, T., Waguri, S., Uchiyama, Y., Kominami, E., & Tanaka, K. (2007, March). Constitutive autophagy: Vital role in clearance of unfavorable proteins in neurons. Cell Death and Differentiation. Available from: http://www.nature.com/doifinder/10.1038/sj.cdd.4402120.
  63. 63.
    Liu, C., Gao, Y., Barrett, J., & Hu, B. (2010, October). Autophagy and protein aggregation after brain ischemia. Journal of Neurochemistry, 115(1), 68–78.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Komal Saraswat
    • 1
  • Raushan Kumar
    • 1
  • Syed Ibrahim Rizvi
    • 1
  • Abhishek Kumar Singh
    • 2
  1. 1.Department of BiochemistryUniversity of AllahabadAllahabadIndia
  2. 2.Amity Institute of Neuropsychology and NeurosciencesAmity University Uttar PradeshNoidaIndia

Personalised recommendations