Skip to main content

Prospective Advances in Circular RNA Investigation

  • Chapter
  • First Online:
Circular RNAs

Abstract

circRNAs have emerged as one of the key regulators in many cellular mechanisms and pathogenesis of diseases. However, with the limited knowledge and current technologies for circRNA investigations, there are several challenges that need to be addressed for. These include challenges in understanding the regulation of circRNA biogenesis, experimental designs, and sample preparations to characterize the circRNAs in diseases as well as the bioinformatics pipelines and algorithms. In this chapter, we discussed the above challenges and possible strategies to overcome those limitations. We also addressed the differences between the existing applications and technologies to study the circRNAs in diseases. By addressing these challenges, further understanding of circRNAs roles and regulations as well as the discovery of novel circRNAs could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haque S, Harries LW (2017) Circular RNAs (CircRNAs) in health and disease. Genes 8(12):1–17

    Google Scholar 

  2. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pamudurti NR, Bartok O, Jens M et al (2017) Translation of CircRNAs. Mol Cell 66(1):9–21 e27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qu S, Liu Z, Yang X et al (2018) The emerging functions and roles of circular RNAs in cancer. Cancer Lett 414(2018):301–309

    Article  CAS  PubMed  Google Scholar 

  5. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee SM, Kong HG, Ryu CM (2017) Are circular RNAs new kids on the block? Trends Plant Sci 22(5):357–360

    Article  CAS  PubMed  Google Scholar 

  7. Liu T, Zhang L, Chen G et al (2017) Identifying and characterizing the circular RNAs during the lifespan of Arabidopsis leaves. Front Plant Sci 8(July):1–9

    Google Scholar 

  8. Dou Y, Cha DJ, Franklin JL et al (2016) Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep 6(October 2015):1–11

    Google Scholar 

  9. Meng S, Zhou H, Feng Z et al (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16(1):1–8

    Article  Google Scholar 

  10. Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21(2):172–179

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6(November 2015):1–12

    Google Scholar 

  12. Zhang ZC, Guo XL, Li X (2018) The novel roles of circular RNAs in metabolic organs. Genes Dis 5(1):16–23

    Article  CAS  PubMed  Google Scholar 

  13. Yang P, Qiu Z, Jiang Y et al (2016) Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/β-catenin signaling pathway. Oncotarget 7(39):63449–63455

    PubMed  PubMed Central  Google Scholar 

  14. Wan L, Zhang L, Fan K et al (2016) Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β-Catenin pathway. Biomed Res Int 2016:1579490

    PubMed  PubMed Central  Google Scholar 

  15. Geng H-H, Li R, Su Y-M et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li F, Zhang L, Li W et al (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 6(8):6001–6013

    PubMed  PubMed Central  Google Scholar 

  17. Kristensen LS, Hansen TB, Venø MT et al (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565

    Article  CAS  PubMed  Google Scholar 

  18. Nan A, Chen L, Zhang N et al (2017) A novel regulatory network among LncRpa, CircRar1, MiR-671 and apoptotic genes promotes lead-induced neuronal cell apoptosis. Arch Toxicol 91(4):1671–1684

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Zheng F, Xiao X, et al (2017) CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep:e201643581-e201643581.

    Google Scholar 

  20. Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:1–13

    Google Scholar 

  21. Chen J (2016) Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. (December):2016–2016

    Google Scholar 

  22. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Liu J, Liu C et al (2013) MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes 62(3):887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Darbani B, Noeparvar S, Borg S (2016) Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Front Plant Sci 7(June):1–8

    Google Scholar 

  26. Ye CY, Chen L, Liu C et al (2015) Widespread noncoding circular RNAs in plants. New Phytol 208(1):88–95

    Article  CAS  PubMed  Google Scholar 

  27. Sun X, Wang L, Ding J et al (2016) Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Lett 590(20):3510–3516

    Article  CAS  PubMed  Google Scholar 

  28. Han Y-N, Xia S-Q, Zhang Y-Y et al (2017) Circular RNAs: a novel type of biomarker and genetic tools in cancer. Oncotarget 8(38):64551–64563

    PubMed  PubMed Central  Google Scholar 

  29. Yang W, Du WW, Li X et al (2016) Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35(30):3919–3931

    Article  CAS  PubMed  Google Scholar 

  30. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    CAS  PubMed  Google Scholar 

  31. Kramer MC, Liang D, Tatomer DC et al (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29(20):2168–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNApromotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412

    PubMed  Google Scholar 

  33. Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  34. Braunschweig U, Barbosa-Morais NL, Pan Q et al (2014) Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res 24(11):1774–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Y, Fan X, Mao M et al (2017) Extensive translation of circular RNAs driven by N 6 -methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cui X, Niu W, Kong L et al (2016) hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in major depressive disorder. Biomark Med 10(9):943–952

    Article  CAS  PubMed  Google Scholar 

  37. Guo X-Y, Chen J-N, Sun F et al (2017) circRNA_0046367 prevents Hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis. Oxid Med Cell Longev 2017:3960197

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in Cancer. Cancer Res 73(18):5609–5612

    Article  CAS  PubMed  Google Scholar 

  39. Tang C-M, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hansen TB, Venø MT, Damgaard CK et al (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res 44(6):e58–e58

    Article  PubMed  Google Scholar 

  41. Szabo L, Salzman J (2016) Detecting circular RNAs: Bioinformatic and experimental challenges. Nat Rev Genet 17:679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Quail MA, Kozarewa I, Smith F et al (2008) A large genome centre’s improvements to the Illumina sequencing system. Nat Methods 5(12):1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Houseley J, Tollervey D (2010) Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. PLoS One 5(8):e12271

    Article  PubMed  PubMed Central  Google Scholar 

  44. Luo GX, Taylor J (1990) Template switching by reverse transcriptase during DNA synthesis. J Virol 64(9):4321–4328

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kelleher CD, Champoux JJ (1998) Characterization of RNA strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase. J Biol Chem 273(16):9976–9986

    Article  CAS  PubMed  Google Scholar 

  46. Panda AC, De S, Grammatikakis I et al (2017) High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 45(12):e116–e116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng Y, Zhao F (2018) Detection and reconstruction of circular RNAs from transcriptomic data. In: Dieterich C, Papantonis A (eds) Circular RNAs: methods and protocols. Springer, New York, pp 1–8. https://doi.org/10.1007/978-1-4939-7562-4_1

    Chapter  Google Scholar 

  49. Jakobi T, Dieterich C (2018) Deep computational circular RNA analytics from RNA-seq data. In: Dieterich C, Papantonis A (eds) Circular RNAs: methods and protocols. Springer, New York, pp 9–25. https://doi.org/10.1007/978-1-4939-7562-4_2

    Chapter  Google Scholar 

  50. Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Zhang X-O, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X-O, Wang H-B, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    Article  CAS  PubMed  Google Scholar 

  54. Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cooper DA, Cortés-López M, Miura P (2018) Genome-wide circRNA profiling from RNA-seq data. In: Dieterich C, Papantonis A (eds) Circular RNAs: methods and protocols. Springer, New York, pp 27–41. https://doi.org/10.1007/978-1-4939-7562-4_3

    Chapter  Google Scholar 

  57. Zhang Y, Liang W, Zhang P et al (2017) Circular RNAs: emerging cancer biomarkers and targets. J Exp Clin Cancer Res 36(1):152

    Article  PubMed  PubMed Central  Google Scholar 

  58. Heumüller AW, Boeckel J-N (2018) Characterization and validation of circular RNA and their host gene mRNA expression using PCR. In: Dieterich C, Papantonis A (eds) Circular RNAs: methods and protocols. Springer, New York, pp 57–67. https://doi.org/10.1007/978-1-4939-7562-4_5

    Chapter  Google Scholar 

  59. Panda AC, Abdelmohsen K, Gorospe M (2017) RT-qPCR detection of senescence-associated circular RNAs. Methods Mol Biol (Clifton, N.J.) 1534:79–87

    Article  CAS  Google Scholar 

  60. Chen D-F, Zhang L-J, Tan K et al (2018) Application of droplet digital PCR in quantitative detection of the cell-free circulating circRNAs. Biotechnol Biotechnol Equip 32(1):116–123

    Article  Google Scholar 

  61. Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  PubMed  Google Scholar 

  62. Schneider T, Schreiner S, Preußer C et al (2018) Northern blot analysis of circular RNAs. In: Dieterich C, Papantonis A (eds) Circular RNAs: methods and protocols. Springer New York, New York, pp 119–133. https://doi.org/10.1007/978-1-4939-7562-4_10

    Chapter  Google Scholar 

  63. Kocks C, Boltengagen A, Piwecka M et al (2018) Single-molecule fluorescence in situ hybridization (FISH) of circular RNA CDR1as. In: Dieterich C, Papantonis A (eds) Circular RNAs: methods and protocols. Springer New York, New York, pp 77–96. https://doi.org/10.1007/978-1-4939-7562-4_7

    Chapter  Google Scholar 

  64. Zirkel A, Papantonis A (2018) Detecting circular RNAs by RNA fluorescence in situ hybridization. In: Dieterich C, Papantonis A (eds) Circular RNAs: methods and protocols. Springer, New York, pp 69–75. https://doi.org/10.1007/978-1-4939-7562-4_6

    Chapter  Google Scholar 

  65. Huang M-S, Zhu T, Li L et al (2018) LncRNAs and CircRNAs from the same gene: masterpieces of RNA splicing. Cancer Lett 415:49–57

    Article  CAS  PubMed  Google Scholar 

  66. Song X, Zhang N, Han P et al (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44(9):e87–e87

    Article  PubMed  PubMed Central  Google Scholar 

  67. Izuogu OG, Alhasan AA, Alafghani HM et al (2016) PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events. BMC Bioinformatics 17(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hoffmann S, Otto C, Doose G et al (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15(2):R34

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang K, Singh D, Zeng Z et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38(18):e178–e178

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chuang T-J, Wu C-S, Chen C-Y et al (2016) NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res 44(3):e29–e29

    Article  PubMed  Google Scholar 

  71. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16(1):126

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gao Y, Zhang J, Zhao F (2017) Circular RNA identification based on multiple seed matching. Brief Bioinform: bbx014–bbx014

    Google Scholar 

  74. Westholm JO, Miura P, Olson S et al (2014) Genomewide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cheng J, Metge F, Dieterich C (2016) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32(7):1094–1096

    Article  CAS  PubMed  Google Scholar 

  76. Gao Y, Zhao F (2018) Computational strategies for exploring circular RNAs. Trends Genet 34:389

    Article  CAS  PubMed  Google Scholar 

  77. Zeng X, Lin W, Guo M et al (2017) A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 13(6):e1005420

    Article  PubMed  PubMed Central  Google Scholar 

  78. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25–R25

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  82. Hansen TB (2018) Improved circRNA identification by combining prediction algorithms. Front Cell Dev Biol 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  83. Baruzzo G, Hayer KE, Kim EJ et al (2017) Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 14(2):135–139

    Article  CAS  PubMed  Google Scholar 

  84. Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    Article  PubMed  PubMed Central  Google Scholar 

  85. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Glažar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ghosal S, Das S, Sen R et al (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liu Y-C, Li J-R, Sun C-H et al (2016) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 44(Database issue):D209–D215

    Article  CAS  PubMed  Google Scholar 

  89. Gao Y, Wang J, Zheng Y et al (2016) Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 7:12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Metge F, Czaja-Hasse LF, Reinhardt R et al (2017) FUCHS—towards full circular RNA characterization using RNAseq. PeerJ 5:e2934

    Article  PubMed  PubMed Central  Google Scholar 

  91. Meng X, Chen Q, Zhang P et al (2017) CircPro: an integrated tool for the identification of circRNAs with protein-coding potential. Bioinformatics 33(20):3314–3316

    Article  PubMed  Google Scholar 

  92. Feng J, Xiang Y, Xia S, et al (2017) CircView: a visualization and exploration tool for circular RNAs. Brief Bioinform:bbx070-bbx070

    Google Scholar 

  93. Dudekula DB, Panda AC, Grammatikakis I et al (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13(1):34–42

    Article  PubMed  Google Scholar 

  94. Grant GR, Farkas MH, Pizarro AD et al (2011) Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27(18):2518–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Streit S, Michalski CW, Erkan M et al (2008) Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nat Protoc 4:37

    Article  Google Scholar 

  96. PCvdC M, Roeland WD, PMvG R et al (1998) Sensitive mRNA detection by fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification. J Histochem Cytochem 46(11):1249–1259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nor Azian Abdul Murad or Nadiah Abu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sulaiman, S.A., Abdul Murad, N.A., Mohamad Hanif, E.A., Abu, N., Jamal, R. (2018). Prospective Advances in Circular RNA Investigation. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_28

Download citation

Publish with us

Policies and ethics