Skip to main content

Heterologous Expression of Lignocellulolytic Enzymes in Aspergillus niger

  • Chapter
  • First Online:
Fungal Cellulolytic Enzymes

Abstract

Aspergillus niger is a genetically tractable model organism for scientific discovery and a platform organism used for the production of heterologous enzymes. Academic strategies to increase production include the use of strong promoters, multiple gene copies, gene knock out and knock in strains, secretion pathway engineering, and multi omics-based approaches. However, yields of heterologous proteins are still lower than desired. Industrial approaches are more effective and straightforward: optimizing bioprocess conditions, strains engineering through multiple rounds of mutagenesis and reverse genetics, and new expression constructs design and testing, which are based on high-throughput screening in automated bioreactor/fermenter. High-level production of heterologous enzymes remains elusive in Aspergillus niger but more promising than ever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adav SS, Ravindran A et al (2013) Proteomic analysis of temperature dependent extracellular proteins from Aspergillus fumigatus grown under solid-state culture condition. J Proteome Res 12(6):2715–2731

    Article  PubMed  CAS  Google Scholar 

  • Al-Sheikh H, Watson AJ et al (2004) Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Mol Microbiol 53(6):1731

    Article  PubMed  CAS  Google Scholar 

  • Beckham GT, Dai Z et al (2012) Harnessing glycosylation to improve cellulase activity. Curr Opin Biotechnol 23(3):338–345

    Article  PubMed  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355

    Article  PubMed  CAS  Google Scholar 

  • Blumhoff M, Steiger MG et al (2013) Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Appl Microbiol Biotechnol 97(1):259–267

    Article  PubMed  CAS  Google Scholar 

  • Broekhuijsen MP, Mattern IE et al (1993) Secretion of heterologous proteins by Aspergillus niger : production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31(2):135–145

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Punt PJ et al (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33(3):155–171

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Jiang L et al (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74(4):288

    Article  PubMed  CAS  Google Scholar 

  • Deshpande N, Wilkins MR et al (2008) Protein glycosylation pathways in filamentous fungi. Glycobiology 18(8):626

    Article  PubMed  CAS  Google Scholar 

  • Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer Suppl 1:3–10

    Article  Google Scholar 

  • Enshasy E (2007) Filamentous fungal cultures-process characteristics, products, and applications. In: Bioprocessing for value-added products from renewable resources. Elsevier, London

    Google Scholar 

  • Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87(4):1255–1270

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Gao F et al (2012) N-Glycoform diversity of cellobiohydrolase I from Penicillium decumbens and synergism of nonhydrolytic glycoform in cellulose degradation. J Biol Chem 287(19):15906–15915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22(11):1409

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Annu Rev Mar Sci 3(1):347–371

    Article  Google Scholar 

  • Gladden JM, Park JI et al (2014) Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnol Biofuels 7(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gouka RJ, Punt PJ et al (1997a) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Gouka RJ, Punt PJ et al (1997b) Glucoamylase gene fusions alleviate limitations for protein production in Aspergillus awamori at the transcriptional and (post) translational levels. Appl Environ Microbiol 63(2):488

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guillemette T, Peij NNV et al (2007) Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics 8(1):158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta VK (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41(7):633–645

    Article  PubMed  CAS  Google Scholar 

  • Hijarrubia MJ, Casqueiro J et al (1997) Characterization of the bip gene of Aspergillus awamori encoding a protein with an HDEL retention signal homologous to the mammalian BiP involved in polypeptide secretion. Curr Genet 32(2):139

    Article  PubMed  CAS  Google Scholar 

  • Hombergh JPTW, Gelpke MDS et al (1997) Disruption of three acid proteases in Aspergillus niger – effects on protease spectrum, intracellular proteolysis, and degradation of target proteins. Eur J Biochem 247(2):605

    Article  PubMed  Google Scholar 

  • Inoue H, Kimura T et al (1991) The gene and deduced protein sequences of the zymogen of Aspergillus niger acid proteinase A. J Biol Chem 266(29):19484

    PubMed  CAS  Google Scholar 

  • Jeenes DJ, Pfaller R et al (1997) Isolation and characterisation of a novel stress-inducible PDI-family gene from Aspergillus niger. Gene 193(2):151–156

    Article  PubMed  CAS  Google Scholar 

  • Jin C (2012) Protein glycosylation in Aspergillus fumigatus is essential for cell wall synthesis and serves as a promising model of multicellular eukaryotic development. Int J Microbiol 2012(1687-918X):654251

    PubMed  Google Scholar 

  • Joosten V, Lokman C et al (2003) The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Factories 2(1):1–15

    Article  Google Scholar 

  • Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16(4):343

    Article  PubMed  CAS  Google Scholar 

  • Krishnan S, Vijayalakshmi MA (1985) Purification of an acid protease and a serine carboxypeptidase from Aspergillus niger using metal-chelate affinity chromatography. J Chromatogr 329(1):165

    Article  PubMed  CAS  Google Scholar 

  • Lam PVN, Goldman R et al (2013) Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes. Genomics Proteomics Bioinformatics 11(2):96–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linden H, Kaushansky K (2000) The glycan domain of thrombopoietin enhances its secretion. Biochemistry 39(11):3044

    Article  PubMed  CAS  Google Scholar 

  • Lotfy WA, Ghanem KM et al (2007) Citric acid production by a novel Aspergillus niger isolate: I. Mutagenesis and cost reduction studies. Bioresour Technol 98(18):3464

    Article  PubMed  CAS  Google Scholar 

  • Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27(1):53

    Article  PubMed  CAS  Google Scholar 

  • Mattern IE, Noort JMV et al (1992) Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet 234(2):332–336

    Article  PubMed  CAS  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi – progress, obstacles and future trends. Biotechnol Adv 26(2):177–185

    Article  PubMed  CAS  Google Scholar 

  • Meyer V, Bo W et al (2011) Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett 33(3):469

    Article  PubMed  CAS  Google Scholar 

  • Meyer V, Fiedler M et al (2015) The cell factory Aspergillus enters the big data era: opportunities and challenges for optimising product formation. Adv Biochem Eng Biotechnol 149:91

    PubMed  CAS  Google Scholar 

  • Mikko A, Tiina P et al (2006) Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics 7(1):32

    Article  CAS  Google Scholar 

  • Mistry PK, Wraight EP et al (1996) Therapeutic delivery of proteins to macrophages: implications for treatment of Gaucher’s disease. Lancet 348(9041):1555–1559

    Article  PubMed  CAS  Google Scholar 

  • Mizutani O, Masaki K et al (2012) Modified Cre-loxP recombination in Aspergillus oryzae by direct introduction of Cre recombinase for marker gene rescue. Appl Environ Microbiol 78(12):4126–4133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulder HJ, Saloheimo M et al (2004) The transcription factor HACA mediates the unfolded protein response in Aspergillus niger, and up-regulates its own transcription. Mol Gen Genomics 271(2):130–140

    Article  CAS  Google Scholar 

  • Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi- are we expecting too much? Front Microbiol 5(1):75

    PubMed  PubMed Central  Google Scholar 

  • Nevalainen KMH, Te’O VSJ et al (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23(9):468–474

    Article  PubMed  CAS  Google Scholar 

  • Nødvig CS, Nielsen JB et al (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10(7):e0133085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogundero VW (1987) Temperature and aflatoxin production by Aspergillus flavus and A. parasiticus strains from Nigerian groundnuts. J Basic Microbiol 27(9):511–514

    Article  PubMed  CAS  Google Scholar 

  • Park JI, Steen EJ et al (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7(5):e37010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pel HJ, Winde JHD et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25(2):221

    Article  PubMed  Google Scholar 

  • Pérez J, Muñozdorado J et al (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    Article  PubMed  CAS  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology 158(1):58–68

    Article  PubMed  CAS  Google Scholar 

  • Quinlan RJ, Sweeney MD et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108(37):15079–15084

    Article  PubMed  PubMed Central  Google Scholar 

  • Rab MA, Freeman TW et al (2013) Integrated approaches for assessment of cellular performance in industrially relevant filamentous fungi. Ind Biotechnol 9(6):337–344

    Article  Google Scholar 

  • Ries LN, Beattie SR et al (2016) Diverse regulation of the CreA carbon catabolite repressor in Aspergillus nidulans. Genetics 203(1):335–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruijter GJ, Vanhanen SA et al (1997) Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabinose catabolic enzymes. Microbiology 143(Pt 9):2991

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Díez B (2002) A review: strategies for the transformation of filamentous fungi. J Appl Microbiol 92(2):189

    Article  PubMed  Google Scholar 

  • Saloheimo M, Valkonen M et al (2003) Activation mechanisms of the HAC1-mediated unfolded protein response in filamentous fungi. Mol Microbiol 47(4):1149–1161

    Article  PubMed  CAS  Google Scholar 

  • Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24(7):777

    Article  PubMed  CAS  Google Scholar 

  • Sims AH, Gent ME et al (2005) Transcriptome analysis of recombinant protein secretion by Aspergillus nidulans and the unfolded-protein response in vivo. Appl Environ Microbiol 71(5):2737–2747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stals I, Sandra K et al (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. I: postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14(8):713–724

    Article  PubMed  CAS  Google Scholar 

  • Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4(10):3913–3929

    Article  CAS  Google Scholar 

  • Thompson SA (1990) Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Gene 86(2):153–162

    Article  PubMed  Google Scholar 

  • Travers KJ, Patil CK et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258

    Article  PubMed  CAS  Google Scholar 

  • Valkonen M, Ward M et al (2003) Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response. Appl Environ Microbiol 69(12):6979–6986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Berg BA, Reinders MJ et al (2012) Exploring sequence characteristics related to high-level production of secreted proteins in Aspergillus niger. PLoS One 7(10):e45869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Berg BA, Reinders MJ et al (2014) Protein redesign by learning from data. Protein Eng Des Sel 27(9):281–288

    Article  PubMed  CAS  Google Scholar 

  • van den Hombergh JP, Jarai G et al (1994) Cloning, characterization and expression of pepF, a gene encoding a serine carboxypeptidase from Aspergillus niger. Gene 151(1–2):73–79

    Article  PubMed  Google Scholar 

  • van den Hombergh JP, van de Vondervoort PJ et al (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15(7):256

    Article  PubMed  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Cummings RD et al (2009) Part I, general principles, essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Verdoes JC, Punt PJ et al (1994) The effect of multiple copies of the upstream region on expression of the Aspergillus niger glucoamylase-encoding gene. Gene 145(2):179–187

    Article  PubMed  CAS  Google Scholar 

  • Ward M, Wilson LJ et al (1990) Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Nat Biotechnol 8(5):435–440

    Article  CAS  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20(3):295–299

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Mao Z et al (2011) Ku80 gene is related to non-homologous end-joining and genome stability in Aspergillus niger. Curr Microbiol 62(4):1342–1346

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Huang, Y., Wang, H. (2018). Heterologous Expression of Lignocellulolytic Enzymes in Aspergillus niger . In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_8

Download citation

Publish with us

Policies and ethics