Skip to main content

The Biological Promises of Endophytic Muscodor Species

  • Chapter
  • First Online:
Fungi and their Role in Sustainable Development: Current Perspectives

Abstract

With increasing human population and limited land for agriculture, it has become a herculean task to provide food security to over 7 billion people around the world. The majority of the food produced is lost in postharvest losses. The present approaches to manage the current situation appear to be ineffective and unsustainable. Further, the development of resistance in microbes against the current arsenal of drugs and the destructive effects of methyl bromide and sulfur dioxide on the ozone layer has worsened the situation. This calls for an urgent need to explore alternate avenues for management of postharvest losses. Besides various chemical approaches, exploration of natural resources for finding out new anti-infective and biocontrol agents appears to be a plausible and sustainable solution for management of postharvest losses. Muscodor is a genus of sterile endophytic fungi which has the remarkable property to produce a mixture of volatile organic compounds (VOCs) which are lethal against a number of plant and human pathogenic bacteria and fungi, nematodes, and moths. Further, the VOCs of Muscodor spp. have also shown promising application as biocontrol agent and in management of human waste. Recently, the extrolites of Muscodor species have also shown promising antimicrobial, anti-obesity, antihyperuricemic, and antioxidant activity. Hence, the current chapter embodies the potential uses of volatiles and other extrolites produced by Muscodor species and their possible application in agriculture and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpha JC, Campos M, Wagner JC, Strobel AS (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Atmosukarto I, Castillo U, Hess WM, Sears J, Strobel G (2005) Isolation and characterization of Muscodor albus I-41.3s, a volatile antibiotic producing fungus. Plant Sci 169:854–861

    Article  CAS  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  • Banerjee D, Strobel G, Geary B, Sears J, Erza D, Liarzi O, Coombs J (2010) Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 1:179–186

    Article  CAS  Google Scholar 

  • Banerjee D, Pandey A, Jana M, Strobel G (2013) Muscodor albus MOW12 an endophyte of Piper nigrum L. (Piperaceae) collected from North East India produces volatile antimicrobials. Indian J Microbiol 54:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banguela-Castillo AB, Gonzalez PLR, Marey MP, Tanaka FAO, Moraes MCB, Rodriguez LH, Cabrera RI (2015) Crop Prot 78:284–292

    Article  Google Scholar 

  • Boparai JK, Saxena S, Meshram V (2015) In vitro antimicrobial potential of Indian Muscodor species. J Basic Appl Mycol 11:22–25

    Google Scholar 

  • Braun G, Vailati M, Prange R, Bevis E (2012) Muscodor albus volatiles control toxigenic fungi under controlled atmosphere (CA) storage conditions. Int J Mol Sci 13:15848–15858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camp AR, Dillard HR, Smart CD (2008) Efficacy of Muscodor albus for the control of Phytophthora blight of sweet pepper and butternut squash. Plant Dis 92:1488–1492

    Article  PubMed  Google Scholar 

  • Corcuff R, Mercier J, Tweddell R, Arul J (2011) Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol 115:220–227

    Article  CAS  PubMed  Google Scholar 

  • Daisy B, Strobel G, Ezra D, Castillo U, Baird G, Hess WM (2002) Muscodor vitigenus anam. sp. nov., an endophyte from Paullinia paullinioides. Mycotaxon 84:39–50

    Google Scholar 

  • Ezra D, Strobel GA (2003) Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Sci 165:1229–1238

    Article  CAS  Google Scholar 

  • Ezra D, Jasper J, Rogers T, Knighton B, Grimsrud E, Strobel G (2004a) Proton transfer reaction-mass spectrometry as a technique to measure volatile emissions of Muscodor albus. Plant Sci 166:1471–1477

    Article  CAS  Google Scholar 

  • Ezra D, Hess WM, Strobel GA (2004b) New endophytic isolates of Muscodor albus, a volatile antibiotic producing fungus. Microbiology 150:4023–4031

    Article  CAS  PubMed  Google Scholar 

  • Gabler MF, Fassel R, Mercier J, Smilanick JL (2006) Influence of temperature, inoculation interval, and dosage on biofumigation with Muscodor albus to control postharvest gray mold on grapes. Plant Dis 90:1019–1025

    Article  PubMed  Google Scholar 

  • Gabler MF, Mercier J, Jimenez JI, Smilanick JL (2010) Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes. Postharvest Biol Technol 55:78–84

    Article  CAS  Google Scholar 

  • Goates BJ, Mercier J (2009) Effect of biofumigation with volatiles from Muscodor albus on the viability of Tilletia spp. teliospores. Can J Microbiol 55:203–206

    Article  CAS  PubMed  Google Scholar 

  • Gomes AAM, Queiroz MV, Pereira OL (2015) Mycofumigation for the biological control of post-harvest diseases in fruits and vegetables: a review. Austin J Biotechnol Bioeng 2:2–8

    Google Scholar 

  • Gonzalez MC, Anaya AL, Glenn AE, Macias-Rubalcava ML, Hernandez-Bautista BE, Hanlin RT (2009) Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon 110:363–372

    Article  Google Scholar 

  • Grimme E, Zidack NK, Sikora RA, Strobel GA, Jacobsen BJ (2007) Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Dis 91:220–225

    Article  CAS  PubMed  Google Scholar 

  • Gu YQ, Mo MH, Zhou JP, Zou CS, Zhang KQ (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575

    Article  CAS  Google Scholar 

  • Gupta M, Saxena S, Goyal D (2015) Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species. J Enzyme Inhib Med Chem 30(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Kapoor N, Saxena S (2016) Xanthine oxidase inhibitory and antioxidant potential of Indian Muscodor species. 3 Biotech 6:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505

    Article  CAS  Google Scholar 

  • Krajaejun T, Lowhnoo T, Yingyong W, Rujirawat T, Fucharoen S, Strobel G (2012) In vitro antimicrobial activity of volatile organic compounds from Muscodor crispans against the pathogenic oomycete Pythium insidiosum. Southeast Asian J Trop Med Public Health 43:1474–1483

    PubMed  Google Scholar 

  • Kudalkar P, Strobel G, Riyaz-Ul-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325

    Article  CAS  Google Scholar 

  • Kusari S, Lamshoft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87

    Article  CAS  PubMed  Google Scholar 

  • Lacey LA, Neven LG (2006) The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J Invertebr Pathol 91:195–198

    Article  PubMed  Google Scholar 

  • Lacey LA, Horton DR, Jones DC, Headrick HL, Neven LG (2009) Efficacy of the biofumigant fungus Muscodor albus (Ascomycota: Xylariales) for control of codling moth (Lepidoptera: Tortricidae) in simulated storage conditions. J Econ Entomol 102:43–49

    Article  CAS  PubMed  Google Scholar 

  • Macias-Rubalcava ML, Hernandez-Bautista BE, Oropeza F, Duarte G, Gonzalez MC, Glenn AE, Hanlin RT, Anaya AL (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Mercier J, Jimenez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31:1–8

    Article  Google Scholar 

  • Mercier J, Jimenez JI (2007) Potential of the volatile-producing fungus Muscodor albus for control of building molds. Can J Microbiol 53:404–410

    Article  CAS  PubMed  Google Scholar 

  • Mercier J, Jimenez JI (2009) Demonstration of the biofumigation activity of Muscodor albus against Rhizoctonia solani in soil and potting mix. BioControl 54:797–805

    Article  CAS  Google Scholar 

  • Mercier J, Manker DC (2005) Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Prot 24:355–362

    Article  Google Scholar 

  • Mercier J, Smilanick JL (2005) Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biol Control 32:401–407

    Article  Google Scholar 

  • Mercier J, Jimenez-Santamaria JI, Guerra PT (2007) Development of the volatile producing Fungus Muscodor albus Worapong, Strobel and Hess as a novel antimicrobial biofumigant. Rev Mex Fitopatol 25:173–179

    Google Scholar 

  • Mercier J, Lego SF, Smilanick JL (2009) In-package use of Muscodor albus volatile-generating sachets and modified atmosphere liners for decay control in organic table grapes under commercial conditions. Fruits 65:31–38

    Article  Google Scholar 

  • Meshram V, Kapoor N, Saxena S (2013) Muscodor kashayum sp. nov.–a new volatile antimicrobial producing endophytic fungus. Mycology 4:196–204

    Article  CAS  PubMed  Google Scholar 

  • Meshram V, Saxena S, Kapoor N (2014) Muscodor strobelii, a new endophytic species from South India. Mycotaxon 128:93–104

    Article  Google Scholar 

  • Meshram V, Gupta M, Saxena S (2016) Muscodor ghoomensis and Muscodor indica: new endophytic species based on morphological features, molecular and volatile organic analysis from Northeast India. Sydowia 67:133–146

    Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

    Article  CAS  PubMed  Google Scholar 

  • Pena LC, Jung LF, Savi DC, Servienski A, Aluizio R, Goulin EH, Galli-Terasawa LV, Maia BH, Annies V, Franco CR, Glienke C, Kava V (2016) A Muscodor strain isolated from Citrus sinensis and its production of volatile organic compounds inhibiting Phyllosticta citricarpa growth. J Plant Dis Prot 15:1–12

    CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Fokkema NJ, Heuvel VD (eds) Microbial ecology of leaves. Cambridge University Press, Cambridge, pp 185–187

    Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, Huge E, Mackenzie C, Hyde K, Jeewon R (2007) Phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53(4):579–590

    Article  PubMed  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  CAS  PubMed  Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Hasan SRL (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springer Plus 2(1):8–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Qadri M, Nalli Y, Jain SK, Chaubey A, Ali A, Strobel GA, Vishwakarma RA, Riyaz-Ul-Hassan S (2016) An insight into the secondary metabolism of Muscodor yucatanensis: small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte. Microb Ecol. https://doi.org/10.1007/s00248-016-0901-y

  • Ramin AA, Braun PG, Prange RK, Delong JM (2005) In vitro effects of Muscodor albus and three volatile components on growth of selected postharvest microorganisms. Hortscience 40:2109–2114

    CAS  Google Scholar 

  • Riga E, Lacey LA, Guerra N (2008) Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biol Control 45:380–385

    Article  Google Scholar 

  • Saxena S, Meshram V, Kapoor N (2014) Muscodor darjeelingensis, a new endophytic fungus of Cinnamomum camphora collected from northeastern Himalayas. Sydowia 66:55–67

    Google Scholar 

  • Saxena S, Meshram V, Kapoor N (2015) Muscodor tigerii sp. nov. volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann Microbiol 65:47–57

    Article  CAS  Google Scholar 

  • Schnabel G, Mercier J (2006) Use of a Muscodor albus pad delivery system for the management of brown rot of peach in shipping cartons. Postharvest Biol Technol 42:121–123

    Article  Google Scholar 

  • Schotsmans WC, Braun G, Delong JM, Prange RK (2008) Temperature and controlled atmosphere effects on efficacy of Muscodor albus as a biofumigant. Biol Control 44:101–110

    Article  Google Scholar 

  • Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739

    Article  PubMed  Google Scholar 

  • Siri-udom S, Suwannarach N, Lumyong S (2016) Existence of Muscodor vitigenus, M. equiseti and M. heveae sp. nov. in leaves of the rubber tree (Hevea brasiliensis Müll.Arg.), and their biocontrol potential. Ann Microbiol 66:437. https://doi.org/10.1007/s13213-015-1126-x

    Article  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Stinson AM, Zidack NK, Strobel GA, Jacobsen BJ (2003) Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis 87:1349–1354

    Article  PubMed  Google Scholar 

  • Strobel G (2006a) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522

    Article  CAS  PubMed  Google Scholar 

  • Strobel G (2006b) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  CAS  PubMed  Google Scholar 

  • Strobel G (2011) Muscodor species- endophytes with biological promise. Phytochem Rev 10:165–172

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Kluck K, Hess WM, Sears J, Ezra D, Vargas PN (2007) Muscodor albus E-6, an endophyte of Guazuma ulmifolia, making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology 153:2613–2620

    Article  CAS  PubMed  Google Scholar 

  • Suwannarach N, Bussaban B, Hyde KD, Lumyong S (2010) Muscodor cinnamomi, a new endophytic species from Cinnamomum bejolghota. Mycotaxon 114:15–23

    Article  Google Scholar 

  • Suwannarach N, Kumla J, Bussaban B, Lumyong S (2012) Biocontrol of Rhizoctonia solani AG-2, the causal agent of damping off by Muscodor cinnamomi CMU-Cib 461. World J Microbiol Biotechnol 28:3171–3177

    Article  PubMed  Google Scholar 

  • Suwannarach N, Kumla J, Bussaban B, Hyde KD, Matsui K, Lumyong S (2013) Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand. Ann Microbiol 63:1341–1351

    Article  CAS  Google Scholar 

  • Suwannarach N, Kumla J, Matsui K, Lumyong S (2015a) Characterization and efficacy of Muscodor cinnamomi in promoting plant growth and controlling Rhizoctonia root rot in tomatoes. Biol Control 90:25–33

    Article  Google Scholar 

  • Suwannarach N, Bussaban B, Nuangmek W, Pithakpol W, Jirawattanakul B, Matsui K, Lumyong S (2015b) Evaluation of Muscodor suthepensis CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J Sci Food Agric 96:339–345

    Article  CAS  PubMed  Google Scholar 

  • US Environmental Protection Agency Office of Pesticide Programs (2005) Biopesticide Registration Action Document. Muscodor albus QST 20799(QST 20799® technical) 1–44

    Google Scholar 

  • Worapong J, Strobel G (2009) Biocontrol of a root rot of kale by Muscodor albus strain MFC2. BioControl 54:301–306

    Article  Google Scholar 

  • Worapong J, Strobel GA, Ford EJ, Li JY, Baird G, Hess WM (2001) Muscodor albus anam. nov., an endophyte from Cinnamomum zeylanicum. Mycotaxon 79:67–79

    Google Scholar 

  • Worapong J, Strobel GA, Daisy B, Castillo U, Baird G, Hess WM (2002) Muscodor roseus anam. sp. nov., an endophyte from Grevillea pteridifolia. Mycotaxon 81:463–475

    Google Scholar 

  • Yee WL, Lacey LA, Bishop BJB (2009) Pupal mortality and adult emergence of western cherry fruit fly (Diptera: Tephritidae) exposed to the fungus Muscodor albus (Xylariales: Xylariaceae). J Econ Entomol 102:2041–2047

    Article  CAS  PubMed  Google Scholar 

  • Yuan ZL, Su ZZ, Mao LJ, Peng YQ, Yang GM, Lin FC, Zhang CL (2011) Distinctive endophytic fungal assemblage in stems of wild rice (Oryza granulata) in China with special reference to two species of Muscodor (Xylariaceae). J Microbiol 49:15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M, Yuan ZL, Lin FC, Druzhinina IS, Kubicek CP (2010) Muscodor fengyangensis sp. nov. from Southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114:797–808

    Article  CAS  PubMed  Google Scholar 

  • Zidack N, Grimme E, Erza D, Stinson A, Strobel G, Jacobsen B (2002) Development of mycofumigation for control of soil-borne plant pathogens. Department of Plant Science and Plant Pathology, Montana State University, Bozeman

    Google Scholar 

  • Zidack N, Grimme E, Erza D, Stinson A, Strobel G, Jacobsen B (2003) Progress in the development of mycofumigation for control of soil-borne plant diseases. Department of Plant Science and Plant Pathology, Montana State University, Bozeman

    Google Scholar 

Download references

Acknowledgment

Authors are thankful to Dr. Gary Strobel, Prof. Emeritus (Retd.), Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, USA, for all his kind guidance and support over the years. We dedicate this book chapter to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Meshram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M., Meshram, V. (2018). The Biological Promises of Endophytic Muscodor Species. In: Gehlot, P., Singh, J. (eds) Fungi and their Role in Sustainable Development: Current Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-0393-7_4

Download citation

Publish with us

Policies and ethics