Advertisement

Nano-natural Products as Anticancer Agents

  • Atish Tulshiram Paul
  • Anil Jindal
Chapter

Abstract

Cancer is one of the noxious diseases and is a major public health problem worldwide. The clinical management of cancer involves various approaches, but the most common one is chemotherapy. Natural products such as paclitaxel, camptothecin, podophyllotoxin, etc. have been used as major sources of anticancer drugs in many clinical trials. In spite of availability of these drugs for treatment of cancer, failure in chemotherapy is very common due to dose-limited toxicities and occurrence of drug resistance. In this regard, the nano-delivery systems directly target and deliver the selective drug to the cancerous sites and increase the permeability and intracellular accretion of anticancer drugs. Thus, the aim of this chapter is to focus on the application of nanotechnology to develop nano-natural products for effective treatment of cancer.

Keywords

Cancer Cell permeability Nanoparticle Nanotechnology Natural products 

References

  1. Aditya N, Shim M, Lee I, Lee Y, Im MH, Ko S (2013) Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity. J Agric Food Chem 61:1878–1883CrossRefPubMedGoogle Scholar
  2. Akhtar MS, Ahmad U (2014) Biosynthesis of nanomaterials and their applications. Rev Adv Sci Eng 3:197–198CrossRefGoogle Scholar
  3. Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602CrossRefGoogle Scholar
  4. Alam N, Qayum A, Kumar A, Khare V, Sharma PR, Andotra SS, Singh SK, Koul S, Gupta PN (2016) Improved efficacy of cisplatin in combination with a nano-formulation of pentacyclic triterpenediol. Mater Sci Eng C 68:109–116CrossRefGoogle Scholar
  5. Anitha A, Deepa N, Chennazhi K, Lakshmanan VK, Jayakumar R (2014) Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta 1840:2730–2743CrossRefPubMedGoogle Scholar
  6. Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MA, Najafi F, Hashemi SM (2012) Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol 12:226–234CrossRefPubMedGoogle Scholar
  7. Banerjee S, Sahoo AK, Chattopadhyay A, Ghosh SS (2014) Recombinant IκBα-loaded curcumin nanoparticles for improved cancer therapeutics. Nanotechnology 25:345102.  https://doi.org/10.1088/0957-4484/25/34/345102 CrossRefPubMedGoogle Scholar
  8. Barbinta-Patrascu ME, Badea N, Pirvu C, Bacalum M, Ungureanu C, Nadejde PL, Ion C, Rau I (2016) Multifunctional soft hybrid bio-platforms based on nano-silver and natural compounds. Mater Sci Eng C 69:922–932CrossRefGoogle Scholar
  9. Bhushan S, Kakkar V, Pal HC, Guru SK, Kumar A, Mondhe DM, Sharma PR, Taneja SC, Kaur IP, Singh J, Saxena AK (2013) Enhanced anticancer potential of encapsulated solid lipid nanoparticles of TPD: a novel triterpenediol from Boswellia serrata. Mol Pharm 10:225–235CrossRefPubMedGoogle Scholar
  10. Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol 13:790–801CrossRefPubMedGoogle Scholar
  11. Bu L, Gan LC, Guo XQ, Chen FZ, Song Q, Qi-Zhao GXJ, Hou SX, Yao Q (2013) Trans-resveratrol loaded chitosan NPs modified with biotin and avidin to target hepatic carcinoma. Int J Pharm 452:355–362CrossRefPubMedGoogle Scholar
  12. Castillo PM, de la Mata M, Casula MF, Sánchez-Alcázar JA, Zaderenko AP (2014) PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilst J Nanotechnol 5:1312–1319CrossRefGoogle Scholar
  13. Chandrasekharan DK, Khanna PK, Nair CK (2011) Cellular radioprotecting potential of glyzyrrhizic acid, silver nanoparticle and their complex. Mutat Res 723:51–57CrossRefPubMedGoogle Scholar
  14. Chang LC, Wu CL, Liu CW, Chuo WH, Li PC, Tsai TR (2011) Preparation, characterization and cytotoxicity evaluation of tanshinone IIA nanoemulsions. J Biomed Nanotechnol 7:558–567CrossRefPubMedGoogle Scholar
  15. Chung JE, Tan S, Gao SJ, Yongvongsoontorn N, Kim SH, Lee JH, Choi HS, Yano H, Zhuo L, Kurisawa M, Ying JY (2014) Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat Nanotechnol 9:907–912CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60CrossRefPubMedGoogle Scholar
  17. Cui T, Zhang S, Sun H (2017) Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin targeted nanoparticles for breast cancer treatment. Oncol Rep 37:1253–1260CrossRefPubMedGoogle Scholar
  18. Dai X, Liu D, Liu M, Zhang X, Wang W, Jin F, Qian Y, Wang X, Zhao J, Wu Y, Xiong F, Chang NA, Sun YU, Yang Z, Hoffman RM, Liu Y (2017) Anti-metastatic efficacy of traditional Chinese medicine (TCM) ginsenoside conjugated to a VEFGR-3 antibody on human gastric cancer in an orthotopic mouse model. Anticancer Res 37:979–986CrossRefPubMedGoogle Scholar
  19. Das J, Das S, Paul A, Samadder A, Khuda-Bukhsh AR (2014) Strong anticancer potential of nano-triterpenoid from Phytolacca decandra against A549 adenocarcinoma via a Ca2+-dependent mitochondrial apoptotic pathway. J Acupunct Merid Stud 7:140–150CrossRefGoogle Scholar
  20. El-Gogary RI, Rubio N, Wang JTW, Al-Jamal WT, Bourgognon M, Kafa H, Naeem M, Klippstein R, Abbate V, Leroux F, Bals S, Van Tendeloo G, Kamel AO, Awad GA, Mortada ND, Al-Jamal KT (2014) Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8:1384–1401CrossRefPubMedGoogle Scholar
  21. Falconieri MC, Adamo M, Monasterolo C, Bergonzi MC, Coronnello M, Bilia AR (2017) New dendrimer-based nanoparticles enhance curcumin solubility. Planta Med 83:420–425PubMedGoogle Scholar
  22. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917CrossRefPubMedGoogle Scholar
  23. Ghoneum M, Gollapudi S (2011) Synergistic apoptotic effect of Arabinoxylan rice bran (MGN-3/biobran) and curcumin (turmeric) on human multiple myeloma cell line U266 in vitro. Neoplasma 58:118–123CrossRefPubMedGoogle Scholar
  24. Gismondi A, Reina G, Orlanducci S, Mizzoni F, Gay S, Terranova ML, Canini A (2015) Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy. Biomaterials 38:22–35CrossRefPubMedGoogle Scholar
  25. Gou M, Zheng L, Peng X, Men K, Zheng X, Zeng S, Guo G, Luo F, Zhao X, Chen L, Wei Y, Qian Z (2009) Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro. Int J Pharm 375:170–176Google Scholar
  26. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z (2011) Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitroand in vivo. Nanoscale 3:1558–1567CrossRefPubMedGoogle Scholar
  27. Guo L, Peng Y, Yao J, Sui L, Gu A, Wang J (2010) Anticancer activity and molecular mechanism of resveratrol-bovine serum albumin NPs on subcutaneously implanted human primary ovarian carcinoma cells in nude mice. Cancer Biother Radiopharm 25:471–477CrossRefPubMedGoogle Scholar
  28. Half E, Arber N (2009) Colon cancer: preventive agents and the present status of chemoprevention. Expert Opin Pharmacother 10:211–219CrossRefPubMedGoogle Scholar
  29. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hong J, Liu Y, Xiao Y, Yang X, Su W, Zhang M, Liao Y, Kuang H, Wang X (2017) High drug payload curcumin nanosuspensions stabilized by mPEG-DSPE and SPC: in vitro and in vivoevaluation. Drug Deliv 24:109–120CrossRefPubMedGoogle Scholar
  31. Hsieh DS, Wang H, Tan SW, Huang YH, Tsai CY, Yeh MK, Wu CJ (2011) The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials 32:7633–7640CrossRefPubMedGoogle Scholar
  32. Hu SC, Lee IT, Yen MH, Lin CC, Lee CW, Yen FL (2016) Anti-melanoma activity of Bupleurum chinense, Bupleurum kaoi and nanoparticle formulation of their major bioactive compound saikosaponin-d. J Ethnopharmacol 179:432–442CrossRefPubMedGoogle Scholar
  33. Jin G, Jin M, Jin Z, Gao Z, Yin X (2016) Docetaxel-loaded PEG-albumin nanoparticles with improved antitumor efficiency against non-small cell lung cancer. Oncol Rep 36:872–876Google Scholar
  34. Jithan A, Madhavi K, Madhavi M, Prabhakar K (2011) Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int J Pharm Investig 1:119–125CrossRefPubMedPubMedCentralGoogle Scholar
  35. John RM, Ross H (2010) The global economic cost of cancer. American Cancer Society, Livestrong, AustinGoogle Scholar
  36. Johnson JJ, Mukhtar H (2007) Curcumin for chemoprevention of colon cancer. Cancer Lett 255:170–181CrossRefPubMedGoogle Scholar
  37. Jose S, Anju S, Cinu T, Aleykutty NA, Thomas S, Souto EB (2014) In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int J Pharm 474:6–13CrossRefPubMedGoogle Scholar
  38. Karthikeyan S, Prasad NR, Ganamani A, Balamurugan E (2013) Anticancer activity of resveratrol-loaded gelatin NPs on NCI-H460 non-small cell lung cancer cells. Biomed Prev Nutr 3:64–73CrossRefGoogle Scholar
  39. Khan N, Bharali DJ, Adhami VM, Siddiqui IA, Cui H, Shabana SM, Mousa SA, Mukhtar H (2014) Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 35:415–423CrossRefPubMedGoogle Scholar
  40. Kim JE, Park YJ (2017) High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids Surf B Biointerfaces 150:362–372CrossRefPubMedGoogle Scholar
  41. Lee HY, Jeong YI, Kim EJ, Lee KD, Choi SH, Kim YJ, Kim DH, Choi KC (2015) Preparation of caffeic acid phenethyl ester-incorporated nanoparticles and their biological activity. J Pharm Sci 104:144–154CrossRefPubMedGoogle Scholar
  42. Li Z, Wu X, Li J, Yao L, Sun L, Shi Y, Zhang W, Lin J, Liang D, Li Y (2012) Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model. Int J Nanomedicine 7:2389–2398CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li L, Xiang D, Shigdar S, Yang W, Li Q, Lin J, Liu K, Duan W (2014) Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. Int J Nanomedicine 9:1083–1096CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li H, Shi L, Wei J, Zhang C, Zhou Z, Wu L, Liu W (2016) Cellular uptake and anticancer activity of salvianolic acid B phospholipid complex loaded nanoparticles in head and neck cancer and precancer cells. Colloids Surf B Biointerfaces 147:65–72CrossRefPubMedGoogle Scholar
  45. Liu Z, Zhang F, Koh GY, Dong X, Hollingsworth J, Zhang J, Russo PS, Yang P, Stout RW (2015) Cytotoxic and antiangiogenic paclitaxel solubilized and permeation-enhanced by natural product nanoparticles. Anti-Cancer Drugs 26:167–179CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lu J, Huang Y, Zhao W, Marquez RT, Meng X, Li J, Gao X, Venkataramanan R, Wang Z, Li S (2013) PEG-derivatized embelin as a nanomicellar carrier for delivery of paclitaxel to breast and prostate cancers. Biomaterials 34:1591–1600CrossRefPubMedGoogle Scholar
  47. Matthaiou EI, Barar J, Sandaltzopoulos R, Li C, Coukos G, Omidi Y (2014) Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer. Int J Nanomedicine 9:1855–1870PubMedPubMedCentralGoogle Scholar
  48. Mendes LP, Gaeti MP, De Vila PH, de Sousa Vieira M, Dos Santos Rodrigues B, de Ávila Marcelino RI, Dos Santos LC, Valadares MC, Lima EM (2014) Multi-compartimental NPs for co-encapsulation and multimodal drug delivery to tumor cells and neovasculature. Pharm Res 31:1106–1119PubMedGoogle Scholar
  49. Nair KL, Thulasidasan AKT, Deepa G, Anto RJ, Kumar GS (2012) Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int J Pharm 425:44–52CrossRefPubMedGoogle Scholar
  50. Najlah M, Kadam A, Wan KW, Ahmed W, Taylor KM, Elhissi AM (2016) Novel paclitaxel formulations solubilized by parenteral nutrition nanoemulsions for application against glioma cell lines. Int J Pharm 506:102–109CrossRefPubMedGoogle Scholar
  51. Nekkanti V, Venkateswarlu V, Ansari KA, Pillai R (2011) Development and pharmacological evaluation of a PEG based nanoparticulate camptothecin analog for oral administration. Curr Drug Deliv 8:661–666CrossRefPubMedGoogle Scholar
  52. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery. J Med Chem 51:2589–2599CrossRefPubMedGoogle Scholar
  53. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefPubMedGoogle Scholar
  54. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335CrossRefPubMedPubMedCentralGoogle Scholar
  55. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661CrossRefGoogle Scholar
  56. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037CrossRefPubMedGoogle Scholar
  57. de Pace RC, Liu X, Sun M, Nie S, Zhang J, Cai Q, Gao W, Pan X, Fan Z, Wang S (2013) Anticancer activities of (−)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J Liposome Res 23:187–196CrossRefPubMedGoogle Scholar
  58. Palange AL, Di Mascolo D, Carallo C, Gnasso A, Decuzzi P (2014) Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomedicine 10:991–1002CrossRefPubMedPubMedCentralGoogle Scholar
  59. Park J, Ayyappan V, Bae EK, Lee C, Kim BS, Kim BK, Lee YY, Ahn KS, Yoon SS (2008) Curcumin in combination with bortezomib synergistically induced apoptosis in human multiple myeloma U266 cells. Mol Oncol 2:317–326CrossRefPubMedPubMedCentralGoogle Scholar
  60. Peng LH, Xu SY, Shan YH, Wei W, Liu S, Zhang CZ, Wu JH, Liang WQ, Gao JQ (2014) Sequential release of salidroside and paeonol from a nanosphere-hydrogel system inhibits ultraviolet B-induced melanogenesis in guinea pig skin. Int J Nanomedicine 9:1897–1908CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pham J, Brownlow B, Elbayoumi T (2013) Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers. Mol Pharm 10:3789–3800CrossRefPubMedGoogle Scholar
  62. Phan V, Walters J, Brownlow B, Elbayoumi T (2013) Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas. J Drug Target 21:1001–1011CrossRefPubMedGoogle Scholar
  63. Pund S, Borade G, Rasve G (2014) Improvement of anti-inflammatory and anti-angiogenic activity of berberine by novel rapid dissolving nanoemulsifying technique. Phytomedicine 21:307–314CrossRefPubMedGoogle Scholar
  64. Punfa W, Yodkeeree S, Pitchakarn P, Ampasavate C, Limtrakul P (2012) Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol Sin 33:823–831CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ranjan AP, Mukerjee A, Helson L, Gupta R, Vishwanatha JK (2013) Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis. Anticancer Res 33:3603–3609PubMedGoogle Scholar
  66. Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A (2016) Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol 44:128–134CrossRefPubMedGoogle Scholar
  67. Rocha S, Generalov R, Pereira Mdo C, Peres I, Juzenas P, Coelho MA (2011) Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention. Nanomedicine 6:79–87CrossRefPubMedGoogle Scholar
  68. Sanna V, Pintus G, Roggio AM, Punzoni S, Posadino AM, Arca A, Marceddu S, Bandiera P, Uzzau S, Sechi M (2011) Targeted biocompatible NPs for the delivery of (−)- epigallocatechin 3-gallate to prostate cancer cells. J Med Chem 54:1321–1332CrossRefPubMedGoogle Scholar
  69. Sanna V, Siddiqui IA, Sechi M, Mukhtar H (2013) Resveratrol-loaded NPs based on poly (epsilon-caprolactone) and poly (D,L-lactic-co-glycolic acid)–poly (ethylene glycol) blend for prostate cancer treatment. Mol Pharm 10:3871–3881CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shirode AB, Bharali DJ, Nallanthighal S, Coon JK, Mousa SA, Reliene R (2015) Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int J Nanomedicine 10:475–484PubMedPubMedCentralGoogle Scholar
  71. Siddiqui IA, Bharali DJ, Nihal M, Adhami VM, Khan N, Chamcheu JC, Khan MI, Shabana S, Mousa SA, Mukhtar H (2014) Excellent anti-proliferative and pro-apoptotic effects of (−)-epigallocatechin-3-gallate encapsulated in chitosan NPs on human melanoma cell growth both in vitro and in vivo. Nanomedicine 10:1619–1626Google Scholar
  72. Singh M, Bhatnagar P, Mishra S, Kumar P, Shukla Y, Gupta KC (2015) PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma. Int J Nanomedicine 10:6789–6809CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sulfikkarali N, Krishnakumar N, Manoharan S, Nirmal RM (2013) Chemopreventive efficacy of naringenin-loaded nanoparticles in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Pathol Oncol Res 19:287–296CrossRefPubMedGoogle Scholar
  74. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y (2013) Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B Biointerfaces 111:367–375CrossRefPubMedGoogle Scholar
  75. Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S (2014) Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf B Biointerfaces 113:15–24CrossRefPubMedGoogle Scholar
  76. Sung B, Kunnumakkara AB, Sethi G, Anand P, Guha S, Aggarwal BB (2009) Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol Cancer Ther 8:959–970CrossRefPubMedPubMedCentralGoogle Scholar
  77. Swamy MK, Sudipta K, Jayanta K, Balasubramanya S (2015a) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5:73–81CrossRefGoogle Scholar
  78. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015b) Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta A 151:939–944CrossRefGoogle Scholar
  79. Tan BJ, Liu Y, Chang KL, Lim BK, Chiu GN (2012) Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int J Nanomedicine 7:651–661CrossRefPubMedPubMedCentralGoogle Scholar
  80. Teskac K, Kristl J (2010) The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 390:61–69CrossRefGoogle Scholar
  81. Tzeng CW, Tzeng WS, Lin LT, Lee CW, Yen FL, Lin CC (2016) Enhanced autophagic activity of artocarpin in human hepatocellular carcinoma cells through improving its solubility by a nanoparticle system. Phytomedicine 23:528–540CrossRefPubMedGoogle Scholar
  82. Udompornmongkol P, Chiang BH (2015) Curcumin-loaded polymeric nanoparticles for enhanced anticolorectal cancer applications. J Biomater Appl 30:537–546CrossRefPubMedGoogle Scholar
  83. Verma P, Meher JG, Asthana S, Pawar VK, Chaurasia M, Chourasia MK (2016) Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Deliv 23:479–488CrossRefPubMedGoogle Scholar
  84. Wang L, Liu Z, Liu D, Liu C, Juan Z, Zhang N (2011a) Docetaxel-loaded-lipid-based-nanosuspensions (DTX-LNS): preparation, pharmacokinetics, tissue distribution and antitumor activity. Int J Pharm 13:194–201CrossRefGoogle Scholar
  85. Wang XX, Li YB, Yao HJ, Ju RJ, Zhang Y, Li RJ, Yu Y, Zhang L, Lu WL (2011b) The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 32:5673–5687CrossRefPubMedGoogle Scholar
  86. Wang G, Wang JJ, Yang GY, Du SM, Zeng N, Li DS, Li RM, Chen JY, Feng JB, Yuan SH, Ye F (2012) Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine 7:271–280CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wang P, Zhang L, Peng H, Li Y, Xiong J, Xu Z (2013) The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer bothin vitro and in vivo. Mater Sci Eng C 33:4802–4808Google Scholar
  88. Wang J, Wang Y, Liu Q, Yang L, Zhu R, Yu C, Wang S (2016) Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Appl Mater Interfaces 8:26511–26523CrossRefPubMedGoogle Scholar
  89. WHO (2017) World Health Organization, factsheets. http://www.who.int/mediacentre/factsheets/fs297/en/. Assessed 10 July 2017
  90. Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N, Ganju A, Balakrishna S, Gupta BK, Zafar N, Jaggi M, Chauhan SC (2014) Anticancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35:8635–8648CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zaman MS, Chauhan N, Yallapu MM, Gara RK, Maher DM, Kumari S, Sikander M, Khan S, Zafar N, Jaggi M, Chauhan SC (2016) Curcumin nanoformulation for cervical cancer treatment. Sci Rep 6:20051CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zampieri AL, Ferreira FS, Resende EC, Gaeti MP, Diniz DG, Taveira SF, Lima EM (2013) Biodegradable polymeric nanocapsules based on poly(DL-lactide) for genistein topical delivery: obtention, characterization and skin permeation studies. J Biomed Nanotechnol 9:527–534CrossRefPubMedGoogle Scholar
  93. Zhang P, Ling G, Sun J, Zhang T, Yuan Y, Sun Y, Wang Z, He Z (2011) Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials 32:5524–5533CrossRefPubMedGoogle Scholar
  94. Zhu R, Wu X, Xiao Y, Gao B, Xie Q, Liu H, Wang S (2013) Synergetic effect of SLN curcumin and LDH-5-Fu on SMMC-7721 liver cancer cell line. Cancer Biother Radiopharm 28:579–587CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of PharmacyBirla Institute of Technology and Science Pilani, (Pilani campus)PilaniIndia

Personalised recommendations