Skip to main content

Potential for Developing Low-Input Sustainable Agriculture in the Tropical Andes by Making Use of Native Microbial Resources

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

The Tropical Andes, a vast region spanning over 1,540,000 km2 from Western Venezuela to Northern Chile and Argentina, faces huge challenges. Among these are a rapid demographic change and an increasing demand of agricultural goods to satisfy the needs of both rural and urban population. Unfortunately, crop production in this mountainous region is severely constrained by adverse natural factors, among which low soil fertility and cold climates occupy the top positions in the ranking. Considering that agriculture intensification, following the traditional approaches that made possible the Green Revolution, may cause further disruption and degradation of Andean agroecosystems, new strategies are being explored by researchers and farmers to deal with that dilemma. It has been proposed that partial replacement of agrochemicals (fertilizers and pesticides) with bioinoculants – products formulated with living microorganisms with plant-promoting abilities – is one of the measures that might allow to intensify even more agriculture in the Andes, without seriously affecting the environment or threatening human health. In order to maximize profits following this approach, it is imperative to study in depth the microbial diversity present in the Andean ecosystems, to select microbes exhibiting the best plant growth-promoting traits, and optimal performances in the rhizosphere of crops. Here we review some of the recent advances concerning the description of the microbes colonizing the rhizosphere of some important Andean crops; we further highlight important local and regional experiences showing that the development of efficient bioinoculants may certainly contribute to intensify agriculture in the Tropical Andes and, subsequently, to create better life conditions for the Andean small farmers and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acosta-Quezada PG, Raigón MD, Riofrío-Cuenca T et al (2015) Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem 169:327–335

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye O, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 1–36. https://doi.org/10.1007/978-3-642-18357-7_1

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working Paper 12–03. Retrieved at: http://www.fao.org/docrep/016/ap106e/ap106e.pdf

  • Altieri MA, Funes-Monzote FR (2012) The paradox of cuban agriculture. Mon Rev 63(8):23–33. http://monthlyreview.org/2012/01/01/the-paradox-of-cuban-agriculture. Accessed 12 Dec 2016

    Article  Google Scholar 

  • Andrade-Linares DR, Grosch R, Restrepo S, Krumbein A, Franken P (2011) Effects of dark septate endophytes on tomato plant performance. Mycorrhiza 21:413–422

    Article  PubMed  Google Scholar 

  • Aubron C, Cochet H, Brunschwig G, Moulin C-H (2009) Labor and its productivity in Andean dairy farming systems: a comparative approach. Hum Ecol 37:407–419

    Article  Google Scholar 

  • Barragán-Ocaña A, del -Valle-Rivera MC (2016) Rural development and environmental protection through the use of biofertilizers in agriculture: an alternative for underdeveloped countries? Technol Soc 46:90–99

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Baulcombe D, Crute I, Davies B, Dunwell J, Gale M, Jones J, Pretty J, Sutherland W, Toulmin C (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. The Royal Society Policy Document 11/09. The Royal Society, London

    Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic (Amsterdam) 187:131–141

    Article  Google Scholar 

  • Birch PJ, Bryan G, Fenton B, Gilroy E, Hein I, Jones J, Prashar A, Taylor M, Torrance L, Toth I (2012) Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Sec 4:477–508

    Article  Google Scholar 

  • Bohs L (1989) Ethnobotany of the genus Cyphomandra (Solanaceae). Econ Bot 43:143–163

    Article  Google Scholar 

  • Bojacá CR, Wyckhuys KAG, Gil R, Jiménez J, Schrevens E (2010) Sustainability aspects of vegetable production in the peri-urban environment of Bogotá, Colombia. Int J Sustain Dev World Ecol 17:487–498

    Article  Google Scholar 

  • Borsdorf A, Stadel C (2015) The Andes. Springer International Publishing

    Google Scholar 

  • Calvo P, Zúñiga D (2010) Caracterización fisiológica de cepas de Bacillus spp. aisladas de la rizósfera de papa (Solanum tuberosum). Ecol Apl 9:31–39

    Article  Google Scholar 

  • Calvo Vélez P, Meneses LR, Zúñiga Dávila D (2008) Estudio de las poblaciones microbianas de la rizósfera del cultivo de papa (Solanum tuberosum) en zonas altoandinas. Ecol Apl 7:141–148

    Article  Google Scholar 

  • Calvo P, Martínez C, Rico M, Rojas M, Oswald A (2009) Microbiotic biodiversity and their functionality in roots and rhizosphere of potato plants. In: 15th Triennial ISTRC proceedings, pp 110–116

    Google Scholar 

  • Calvo P, Ormeño-Orrillo E, Martínez-Romero E, Zúñiga D (2010) Characterization of Bacillus isolates of potato rhizosphere from Andean soils of Peru and their potential PGPR characteristics. Braz J Microbiol 41:899–906

    Article  PubMed  PubMed Central  Google Scholar 

  • Cámara de Comercio de Bogotá (2015) Manual tomate de árbol. Programa de apoyo agrícola y agroindustrial. Vicepresidencia de Fortalecimiento Empresarial. Cámara de Comercio de Bogotá. Available at: https://www.ccb.org.co/content/download/13926/176638/file/Tomate.pdf

  • Carrillo-Perdomo E, Aller A, Cruz-Quintana SM, Giampieri F, Alvarez-Suarez JM (2015) Andean berries from ecuador: a review on botany, agronomy, chemistry and health potential. J Berry Res 5:49–69

    Article  Google Scholar 

  • CBI Product Fact Sheet (2015) Quinoa in Europe. Available at: https://www.cbi.eu/sites/default/files/market_information/researches/product-factsheet-europe-quinoa-grains-pulses-2015.pdf

  • Celis Zambrano C, Moreno Durán G, Sequeda-Castañeda LG, GarcíaCaicedo A, Albarracín DM, Charry B, Claudia L (2014) Determining the effectiveness of Candida guilliermondii in the biological control of Rhizopus stolonifer in postharvest tomatoes. Univ Sci 19:51–62

    Google Scholar 

  • Cole DC, Orozco TF, Pradel W, Suquillo J, Mera X, Chacon A, Prain G, Wanigaratne S, Leah J (2011) An agriculture and health inter-sectorial research process to reduce hazardous pesticide health impacts among smallholder farmers in the Andes. BMC Int Health Hum Rights 11:S6

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security, and food for thought. Glob Environ Chang 19:292e305

    Article  Google Scholar 

  • Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, property, and management of volcanic soils. Adv Agron 82:113–182

    Article  CAS  Google Scholar 

  • Davies TFJ, Calderón MC, Huaman Z (2005a) Influence of arbuscular mycorrhizae indigenous to Peru and a flavonoid on growth, yield, and leaf elemental concentration of “Yungay” potatoes. Hortic Sci 40:381–385

    Google Scholar 

  • Davies JFT, Calderón CM, Huaman Z, Gómez R (2005b) Influence of a flavonoid (Formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru. Sci Hortic 106:318–329

    Article  CAS  Google Scholar 

  • De La Peña C, Loyola-Vargas VM (2014) Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol 166:701–719

    Article  CAS  Google Scholar 

  • Devenish C, Gianella C (2012) 20 years of sustainable mountain development in the Andes – from Rio 1992 to 2012 and beyond – Consorcio para el Desarrollo Sostenible de la Ecorregión Andina

    Google Scholar 

  • Dillehay TD, Rossen J, Andres TC, Williams DE (2007) Preceramic adoption of peanut, squash, and cotton in northern Peru. Science 316:1890–1893

    Article  CAS  PubMed  Google Scholar 

  • Dion P (2008) The microbiological promises of extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils, Soil biology, vol 13. Springer, Berlin/Heidelberg, pp 3–13

    Chapter  Google Scholar 

  • Eakin H, Lemos MC (2006) Adaptation and the state: Latin America and the challenge of capacity-building under globalization. Glob Environ Chang 16:7–18

    Article  Google Scholar 

  • Echeverría EJ, Ponce LK, Medina ME (2013) Efecto de la interacción de hongos micorrícicosarbusculares y Pseudomonas fluorescens sobre el desarrollo y la nutrición de plántulas de tomate de árbol (Solanum betaceum). Revista Ciencia 15:45–52

    Google Scholar 

  • Edixhoven JD, Gupta J, Savenije HHG (2014) Recent revisions of phosphate rock reserves and resources: a critique. Earth Syst Dynam 5:491–507

    Article  Google Scholar 

  • Espín E, Medina ME, Jadán M, Proaño K (2010) Utilización de hongos micorrícico-arbusculares en plántulas de tomate de árbol (Solanum betaceum) cultivadas in vitro: efectos durante la fase de aclimatación. Revista Ciencia 13:86–91

    Google Scholar 

  • FAO (2015) The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome

    Google Scholar 

  • FAOStat (2014) Solanum tuberosum annual production. Available at: http://faostat3.fao.org/search/solanum%20tuberosum/E

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Finckh MR, Schulte-Geldermann E, Bruns C (2006) Challenges to organic potato farming: disease and nutrient management. Potato Res 49:27–42

    Article  CAS  Google Scholar 

  • Fonte SJ, Vanek SJ, Oyarzun P, Parsa S, Quintero DC, Rao IM, Lavelle P (2012) Pathways to agroecological intensification of soil fertility management by smallholder farmers in the Andean highlands. Adv Agronomy 116:125–184

    Article  CAS  Google Scholar 

  • Franco J, Main G, Navia O, Ortuño N, Herbas J (2011) Improving productivity of traditional Andean small farmers by bio-rational soil management: I. The potato case. Rev Lat Papa 16:270–290

    Google Scholar 

  • Franco J, Main G, Urquieta E (2015) Valorización de la diversidad microbiológica andina a través de la intensificación sostenible de sistemas agrícolas basados en el cultivo de papa (VALORAM), pp 52–57. In: Fundación PROINPA. Informe Compendio 2011–2014. Cochabamba – Bolivia. Available at: http://www.proinpa.org/publico/Informe_compendio_2011_2014/valorizacion%20de%20la%20diversidad%20microbiologica.pdf

  • Fuentes-Ramírez LE, Caballero-Mellado J (2006) Chapter 5. Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Chapter  Google Scholar 

  • Geiseller D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biol Biochem 75:54–63

    Article  CAS  Google Scholar 

  • Ghyselinck J, Velivelli SLS, Heylen K, O’Herlihy E, Franco J, Rojas M, De Vos P, Doyle Prestwich B (2013) Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Syst Appl Microbiol 36:116–127

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica, Article ID 963401, 15 pages. https://doi.org/10.6064/2012/963401

  • Glover D (2003) Corporate dominance and agricultural biotechnology: implications for development. Democratising biotechnology: genetically modified crops in developing countries briefing series. Briefing 3. Brighton, UK: Institute of Development Studies

    Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Herridge D, Peoples M, Boddey R (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hijri M (2016) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26:209–214

    Article  PubMed  Google Scholar 

  • Hirose Y, Fujita T, Ishii T, Ueno N (2010) Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem 119:1300–1306. https://doi.org/10.1016/j.foodchem.2009.09.008

    Article  CAS  Google Scholar 

  • Hopkins BG, Horneck DA, MacGuidwin AE (2014) Improving phosphorus use efficiency through potato rhizosphere modification and extension. Am J Potato Res 91:161–174

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, Italy

    Google Scholar 

  • Jacobsen SE (2011) The situation for quinoa and its production in southern Bolivia: from economic success to environmental disaster. J Agro Crop Sci 197:390–399

    Article  Google Scholar 

  • Jaimes Y, Moreno C, Cotes AM (2009) Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta Biol Colomb 14:111–120

    Google Scholar 

  • Jaramillo CM, Celeita J-J, Sáenz A (2013) Susceptibility of Delia platura to seven entom pathogenic nematode isolates from the Central Andes region of Colombia. Univ Sci 18:165–172

    Google Scholar 

  • Jiménez DJ, Montaña JS, Martínez MM (2011) Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils. Braz J Microbiol 42:846–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson SE, Loeppert RH (2006) Role of organic acids in phosphate mobilization from iron oxide. Soil Sci Soc Am J 70:222–234

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere — a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664. https://doi.org/10.1007/s10886-012-0134-6

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2009) Role of phosphate solubilizing microorganisms in sustainable agriculture. In: Lictfouse E et al (eds) Sustainable agriculture. Springer, Dordrecht, p 552. https://doi.org/10.1007/978-90-481-2666-8_34

    Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Phil Trans Royal Soc B 363:685–701

    Article  CAS  Google Scholar 

  • Kupferschmied P, Maurhofer M, Keel C (2013) Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci 4:287. https://doi.org/10.3389/fpls.2013.00287

    Article  PubMed  PubMed Central  Google Scholar 

  • McArthur DAJ, Knowles NR (1993) Influence of vesicular arbuscular mycorrhizal fungi on the response of potato to phosphorus deficiency. Plant Physiol 101:147–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Moreno Díaz P (1988) Inoculación de micorrizas en papa (Solanum tuberosum) respuesta en el crecimiento y nutrición de plantas inoculadas en invernadero y en campo. Rev Lat Papa 1:84–103

    Google Scholar 

  • Mulligan M, Rubiano J, Hyman G, Leon J, Saravia M, White D, Vargas V, Selvaraj J, Ball C, Farrow A et al (2009) The Andes Basin Focal Project. Final report to the CGIAR challenge program on water and food. CPWF Project Report PN63

    Google Scholar 

  • Myers N, Mittermeier R, Mittermeier C, Fonseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scottia MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH (2008) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    Article  CAS  Google Scholar 

  • Orrico GD, Ulloa SM, Medina ME (2013) Efecto de los hongos micorrícicosarbusculares y Pseudomonas fluorescens en el control de Meloidogyne spp. en plantas de tomate de árbol (Solanum betaceum). Revista Ciencia 15:1–10

    Google Scholar 

  • Ortuño N, Navia O, Medrano A, Rojas K, Torrico L (2010) Desarrollo de bioinsumos: un aporte a la soberanía alimentaria de Bolivia. Rev Agricultura 62:30–38

    Google Scholar 

  • Ortuño N, Castillo JA, Claros M, Navia O, Angulo M, Barja D, Gutiérrez C, Angulo V (2013) Enhancing the sustainability of quinoa production and soil resilience by using bioproducts made with native microorganisms. Agronomy 3:732–746

    Article  Google Scholar 

  • Ortuño N, Mayra Claros M, Gutiérrez C, Angulo M, Castillo J (2014) Bacteria associated with the cultivation of quinoa in the Bolivian Altiplano and their biotechnological potential. Rev Agricultura 53:53–61

    Google Scholar 

  • Oswald A, Calvo P (2009) Using rhizobacteria to improve productivity of potato. In: 15th Triennial ISTRC proceedings, pp 29–33

    Google Scholar 

  • Oswald A, Calvo P, Sanchez J, Zúñiga D (2007) Using plant growth promoting rhizobacteria to improve potato production and plant health. In: Proceedings of the 16th international symposium of the International Scientific Centre for Fertilizers (CIEC) -Mineral Versus Organic Fertilization Conflict or Synergism? S. De Neve, J. Salomez, A. van den Bossche, S. Haneklaus, O. van Cleemput, G. Hofman, E. Schnug, September 16–19. Gent, Belgium, pp 401–409

    Google Scholar 

  • Oswald A, Calvo Velez P, ZúñigaDávila D, Arcos Pineda J (2010) Evaluating soil rhizobacteria for their ability to enhance plant growth and tuber yield in potato. Ann Appl Biol 157:259–271

    Article  Google Scholar 

  • Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384

    Article  CAS  Google Scholar 

  • Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110. https://doi.org/10.3389/fpls.2016.01110

    Article  PubMed  PubMed Central  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pérez B, Gabriel J, Angulo A, Gonzáles R, Magne J, Ortuño N, Cadima X (2015) Efecto de los bioinsumos sobre la capacidad de respuesta de cultivares nativos de papa (Solanum tuberosum L.) a sequía. Rev Lat Papa 19:40–58

    Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109:3112302–3112308

    Article  Google Scholar 

  • Piperno DR (2011) The origins of plant cultivation and domestication in the new world tropics: patterns, processes, and new developments. Curr Anthropo l52:S453–S470

    Article  Google Scholar 

  • Poulenard J, Podwojewski P (2006) Alpine soils. In: Lal R (ed) Encyclopedia of soil science, vol 2. Taylor and Francis, New York, pp 75–79

    Google Scholar 

  • Poulenard J, Podwojewski P, Herbillon AJ (2003) Characteristics of non-allophanic Andisols with hydric properties from the Ecuadorian páramos. Geoderma 117:267–281

    Article  CAS  Google Scholar 

  • Pretty JN, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Agr Sustain 9:5–24

    Article  Google Scholar 

  • Pro Ecuador Bulletin (2013) Oportunidades para el tomate de árbol ecuatoriano en el mercado español. Boletín de Análisis de Mercados Internacionales. Instituto de Promoción de Exportaciones e Inversiones. 2:20–22

    Google Scholar 

  • Prohens J, Nuez F (2000) The tamarillo (Cyphomandra betacea): a review of a promising small fruit crop. Small Fruits Rev 1:43–68

    Article  Google Scholar 

  • PROINPA Biotop Catalog. Retrieved at: http://www.proinpa.org/tic/index.php?option=com_content&view=article&id=122:catalogo-de-bioinsumos&catid=44&Itemid=153

  • Rahman S (2015) Green Revolution in India: Environmental degradation and impact on livestock. Asian J Water Environ Pollut 12:75–80

    Article  CAS  Google Scholar 

  • Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26:576–590

    Article  CAS  PubMed  Google Scholar 

  • Ramírez IF, Ulloa SM, Medina ME (2013) Efecto de la inoculación combinada de hongos micorrícicosarbusculares y Pseudomonas putida en plantas de tomate de árbol (Solanum betaceum) infectadas con Meloidogyne spp. Revista Ciencia 15:75–86

    Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rojas V, Ulacio D, Jiménez MA, Perdomo W, Pardo A (2010) Análisis epidemiológico y control de Sclerotiumcepivorum Berk. y la pudrición blanca en ajo. Bioagro 22:185–192

    Google Scholar 

  • Rosset PM, Altieri MA (1997) Agroecology versus input substitution: a fundamental contradiction of sustainable agriculture. Soc Nat Resour 10:283–295

    Article  Google Scholar 

  • Rueda D, Valencia G, Soria N, Rueda BB, Manjunatha B, Kundapur RR, Selvanayagam M (2016) Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. J Appl Pharm Sci 6:48–54

    Article  Google Scholar 

  • Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F et al (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev 34:349–359

    Article  Google Scholar 

  • Saigusa M, Matsuyama N (1998) Distribution of Allophanic Andosols and Non-allophanic Andosols in Japan. Tohoku J Agric Res 48:75–83

    Google Scholar 

  • Sánchez López DB, García Hoyos AM, Romero Perdomo FA, Bonilla Buitrago RR (2014) Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactucasativa cultivar White Boston. Rev Colomb Biotecnol 16:122–128

    Article  Google Scholar 

  • Scholz RW, Wellmer F-W (2016) Comment on: “Recent revisions of phosphate rock reserves and resources: a critique” by Edixhoven et al. (2014) – clarifying comments and thoughts on key conceptions, conclusions and interpretation to allow for sustainable action. Earth Syst Dynam 7:103–117

    Article  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280. https://doi.org/10.3389/fmicb.2015.01280

    Article  PubMed  PubMed Central  Google Scholar 

  • Searchinger T, Hanson C, Ranganathan J, Lipinski B, Waite R, Winterbottom R, Dinshaw A, Heimlich R (2013) Creating a sustainable food future: interim findings of the 2013–14 World Resources Report. World Resources Institute, Washington, DC

    Google Scholar 

  • Senés-Guerrero C, Schüssler A (2016) A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers 77:317–333

    Article  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH (2013) Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587. http://www.springerplus.com/content/2/1/587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sieverding E, Friedrichsen J, Suden W (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaftfuer Technische Zusammenarbeit GmbH, Eschborn

    Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011a) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011b) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3e4):339e353

    Google Scholar 

  • Smith A, Beltrán CA, Kusunoki M et al (2013) Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotiniasclerotiorum (Lib.) de Bary. J Gen Plant Pathol 79:74–85

    Article  CAS  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A 102:14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadel C (1991) Environmental stress and sustainable development in the tropical Andes. Mt Res Dev 11:213–223

    Article  Google Scholar 

  • Swaminathan MS (1996) Sustainable agriculture: towards an evergreen revolution. Konark Publ, Delhi

    Google Scholar 

  • Swaminathan MS (2006) An evergreen revolution. Crop Sci 46:2293–2303

    Article  Google Scholar 

  • Tamayo PJ (2001) Tomate de árbol. Principales enfermedades del tomate árbol, la mora y el lulo en Colombia. Corporación Colombiana de Investigación Agropecuaria – CORPOICA Boletín Tecnico No 12. Available at: http://hdl.handle.net/11348/4176

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittonell P (2014) Ecological intensification of agriculture — sustainable by nature. Curr Op Environ Sust 8:53–61

    Article  Google Scholar 

  • Transparency Market Research Report (2012) Biofertilizers market – global industry analysis, size, share, growth, trends and forecast, 2013–2019. Available at: http://www.transparencymarketresearch.com/pressrelease/biofertilizers-market.htm

  • Trivedi P, Pandey A, Palni LMS (2012) Bacterial inoculants for field applications under mountain ecosystems: present initiatives and future prospects. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg, pp 15–44. https://doi.org/10.1007/978-3-642-27515-9_2

    Chapter  Google Scholar 

  • Turner BL, Frossard E, Oberson A (2006) Enhancing phosphorus availability in low-fertility soils. In: Uphoff NT et al (eds) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 191–205

    Chapter  Google Scholar 

  • United Nations (2006) Statistical yearbook for Latin America and the Caribbean. Santiago de Chile. ECLAC, Chile. 438p

    Google Scholar 

  • VALORAM Final Report (2015) Retrieved from http://cordis.europa.eu/result/rcn/164393_en.html on 2016/09/05

  • Vasco C, Avila J, Ruales J, Svanberg U, Kamal-Eldin A (2009) Physical and chemical characteristics of golden-yellow and purple-red varieties of tamarillo fruit (Solanumbetaceum Cav.) Int J Food Sci Nutr 60:278–288

    Article  CAS  PubMed  Google Scholar 

  • Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA (2010) Nutrition facts and functional potential of quinoa (Chenopodiumquinoawilld.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    Article  PubMed  CAS  Google Scholar 

  • Velivelli SLS, Kromann P, Lojan P, Rojas M, Franco J, Suarez JP, Prestwich BD (2014a) Identification of mVOCs from Andean rhizobacteria and field evaluation of bacterial and mycorrhizal inoculants on growth of potato in its center of origin. Microb Ecol 69:652–667

    Article  PubMed  CAS  Google Scholar 

  • Velivelli SLS, Sessitsch A, Doyle Prestwich B (2014b) The role of microbial inoculants in integrated crop management systems. Potato Res 57:291–309

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 1227:1198–1227

    Article  Google Scholar 

  • Wolt JD, Peterson RKD (2000) Agricultural biotechnology and societal decision-making: the role of risk analysis. Ag Bioforum 3:291–298

    Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wu F, Wang W, Ma Y, Liu Y, Ma X, An L, Feng H (2013) Prospect of beneficial microorganisms applied in potato cultivation for sustainable agriculture. African J Microbiol Res 7:2150–2158

    Article  Google Scholar 

  • Yarzábal LA (2014) Cold-tolerant phosphate solubilizing microorganisms and agriculture development in mountainous regions of the world. In: Saghir Khan M et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Cham, pp 113–135

    Google Scholar 

  • Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

  • Zambrano-Moreno DC, Avellaneda-Franco L, Zambrano G, Bonilla-Buitrago RR (2016) Scientometric analysis of Colombian research on bio-inoculants for agricultural production. Univ Sci 21:63

    Article  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    Article  CAS  Google Scholar 

Download references

Acknowledgments

LAY acknowledges Proyecto Prometeo of the National Secretary of Science, Technology and Innovation of Ecuador (SENESCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Andrés Yarzábal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yarzábal, L.A., Chica, E.J. (2017). Potential for Developing Low-Input Sustainable Agriculture in the Tropical Andes by Making Use of Native Microbial Resources. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_2

Download citation

Publish with us

Policies and ethics