Advertisement

Polymer Gels pp 129-146 | Cite as

Updates on Stimuli-Responsive Polymers: Synthesis Approaches and Features

  • Ibrahim M. El-Sherbiny
  • Islam A. Khalil
  • Isra H. Ali
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

Stimuli-responsive polymers (SRPs) are a type of smart materials which can demonstrate noticeable changes in their characteristics as a response to their exposure to some environmental stimuli variations. The environmental stimuli could be physical (e.g., electric field, ionic strength, magnetic field, mechanical stress, pressure, radiation, and temperature), chemical (e.g., specific ions and chemical agents), or biochemical (e.g., enzyme substrates and ligands). Recently, SRPs were used in numerous applications including diagnostics, drug delivery systems, biosensors, regenerative medicine, and stem cells. This chapter illustrates the different categories of SRPs and highlights some of their synthesis approaches, unique features, major development, their different structures, and classifications.

Keywords

Stimuli-responsive polymers SRPs Synthesis Classifications 

References

  1. Alexander C, Shakesheff KM (2006) Responsive polymers at the biology/materials science interface. Adv Mater 18:3321–3328CrossRefGoogle Scholar
  2. Bae Y, Fukushima S, Harada A, Kataoka K (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed 42:4640–4643CrossRefGoogle Scholar
  3. Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Adv Drug Deliv Rev 61:768–784CrossRefPubMedGoogle Scholar
  4. Bajpai A, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118CrossRefGoogle Scholar
  5. Bertin A (2012) Emergence of polymer stereocomplexes for biomedical applications. Macromol Chem Phys 213:2329–2352CrossRefGoogle Scholar
  6. Cascone MG, Sim B, Sandra D (1995) Blends of synthetic and natural polymers as drug delivery systems for growth hormone. Biomaterials 16:569–574CrossRefPubMedGoogle Scholar
  7. Censi R, Fieten PJ, di Martino P, Hennink WE, Vermonden T (2010) In situ forming hydrogels by tandem thermal gelling and Michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan. Macromolecules 43:5771–5778CrossRefGoogle Scholar
  8. Chen T, Embree HD, Brown EM, Taylor MM, Payne GF (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24:2831–2841CrossRefPubMedGoogle Scholar
  9. Chorny M, Fishbein I, Forbes S, Alferiev I (2011) Magnetic nanoparticles for targeted vascular delivery. IUBMB Life 63:613–620CrossRefPubMedGoogle Scholar
  10. Chung HJ, Lee Y, Park TG (2008) Thermo-sensitive and biodegradable hydrogels based on stere complexed Pluronic multi-block copolymers for controlled protein delivery. J Control Release 127:22–30CrossRefPubMedGoogle Scholar
  11. Chung J, Vlugt-Wensink K, Hennink W, Zhang Z (2005) Effect of polymerization conditions on the network properties of dex-HEMA microspheres and macro-hydrogels. Int J Pharm 288:51–61CrossRefPubMedGoogle Scholar
  12. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595CrossRefGoogle Scholar
  13. Coombes A, Verderio E, Shaw B, Li X, Griffin M, Downes S (2002) Biocomposites of non-crosslinked natural and synthetic polymers. Biomaterials 23:2113–2118CrossRefPubMedGoogle Scholar
  14. Daniele MA, Adams AA, Naciri J, North SH, Ligler FS (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35:1845–1856CrossRefPubMedGoogle Scholar
  15. De Groot CJ, Van Luyn MJ, Van Dijk-Wolthuis WN, Cadée JA, Plantinga JA, Den Otter W, Hennink WE (2001) In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials 22:1197–1203CrossRefPubMedGoogle Scholar
  16. De Jong S, van Dijk-Wolthuis W, Kettenes-Van den Bosch J, Schuyl P, Hennink W (1998) Monodisperse enantiomeric lactic acid oligomers: preparation, characterization, and stereocomplex formation. Macromolecules 31:6397–6402CrossRefGoogle Scholar
  17. De las Heras Alarcón C, Farhan T, Osborne VL, Huck WT, Alexander C (2005) Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J Mater Chem 15:2089–2094CrossRefGoogle Scholar
  18. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  19. Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2004) Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromol 5:505–510CrossRefGoogle Scholar
  20. Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Delivery Rev 64:1005–1020CrossRefGoogle Scholar
  21. Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642CrossRefGoogle Scholar
  22. Gu X, Wang J, Wang Y, Wang Y, Gao H, Wu G (2013) Layer-by-layer assembled polyaspartamide nanocapsules for pH-responsive protein delivery. Colloids Surf, B 108:205–211CrossRefGoogle Scholar
  23. Guo D-S, Wang K, Wang Y-X, Liu Y (2012) Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 134:10244–10250CrossRefPubMedGoogle Scholar
  24. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579CrossRefPubMedGoogle Scholar
  25. Habraken W, Wolke J, Jansen J (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248CrossRefPubMedGoogle Scholar
  26. Hayashi G, Hagihara M, Dohno C, Nakatani K (2007) Photoregulation of a peptide-RNA interaction on a gold surface. J Am Chem Soc 129:8678–8679CrossRefPubMedGoogle Scholar
  27. Hennink W, Franssen O, van Dijk-Wolthuis W, Talsma H (1997) Dextran hydrogels for the controlled release of proteins. J Control Release 48:107–114CrossRefGoogle Scholar
  28. Heskins M, Guillet JE (1968) Solution properties of poly (N-isopropylacrylamide). J Macromol Sci Chem 2:1441–1455CrossRefGoogle Scholar
  29. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  30. Hu BH, Messersmith P (2005) Enzymatically cross-linked hydrogels and their adhesive strength to biosurfaces. Orthod Craniofac Res 8:145–149CrossRefPubMedGoogle Scholar
  31. Huang X, Meng X, Tang F, Li L, Chen D, Liu H, Zhang Y, Ren J (2008) Mesoporous magnetic hollow nanoparticles—protein carriers for lysosome escaping and cytosolic delivery. Nanotechnology 19:445101CrossRefPubMedGoogle Scholar
  32. Huang Y, Zhang B, Xu G, Hao W (2013) Swelling behaviours and mechanical properties of silk fibroin-polyurethane composite hydrogels. Composites Science and Technology 84:15–22CrossRefGoogle Scholar
  33. Huang Z, Tang F (2005) Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. J Colloid Interface Sci 281:432–436CrossRefPubMedGoogle Scholar
  34. Huh KM, Cho YW, Chung H, Kwon IC, Jeong SY, Ooya T, Lee WK, Sasaki S, Yui N (2004) Supramolecular Hydrogel Formation Based on Inclusion Complexation Between Poly (ethylene glycol)-Modified Chitosan and alpha-Cyclodextrin. Macromol Biosci 4:92–99CrossRefPubMedGoogle Scholar
  35. Huh KM, Ooya T, Lee WK, Sasaki S, Kwon IC, Jeong SY, Yui N (2001) Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly (ethylene glycol) grafted dextran and alpha-cyclodextrin. Macromolecules 34:8657–8662CrossRefGoogle Scholar
  36. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly (lactides). Macromolecules 20:904–906CrossRefGoogle Scholar
  37. Inomata H, Goto S, Saito S (1990) Phase transition of N-substituted acrylamide gels. Macromolecules 23:4887–4888CrossRefGoogle Scholar
  38. Ionov L, Houbenov N, Sidorenko A, Stamm M, Minko S (2009) Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases 4:FA45–FA49CrossRefPubMedGoogle Scholar
  39. Kamada J, Koynov K, Corten C, Juhari A, Yoon JA, Urban MW, Balazs AC, Matyjaszewski K (2010) Redox responsive behavior of thiol/disulfide-functionalized star polymers synthesized via atom transfer radical polymerization. Macromolecules 43:4133–4139CrossRefGoogle Scholar
  40. Kopecek J (2009) Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci, Part A: Polym Chem 47:5929–5946CrossRefGoogle Scholar
  41. Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165:514–516CrossRefGoogle Scholar
  42. Kuo W-Y, Lai H-M (2011) Morphological, structural and rheological properties of beta-cyclodextrin based polypseudorotaxane gels. Polymer 52:3389–3395CrossRefGoogle Scholar
  43. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem Commun 4312–4314Google Scholar
  44. Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354:291–293CrossRefPubMedGoogle Scholar
  45. La Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Delivery Rev 64:967–978CrossRefGoogle Scholar
  46. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRefGoogle Scholar
  47. Lee ES, Na K, Bae YH (2005) Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 103:405–418CrossRefPubMedGoogle Scholar
  48. Lee K, Yoon J, Lee J, Kim S, Jung H, Kim S, Joh J, Lee H, Lee D, Lee S (2004) Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. In: Transplantation proceedings, pp 2464–2465Google Scholar
  49. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880CrossRefPubMedGoogle Scholar
  50. Leeuwenburgh SC, Jansen JA, Mikos AG (2007) Functionalization of oligo (poly (ethylene glycol) fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. J Biomater Sci Polym Ed 18:1547–1564PubMedGoogle Scholar
  51. Li J, Harada A, Kamachi M (1994) Sol-gel transition during inclusion complex formation between alpha-cyclodextrin and high molecular weight poly (ethylene glycol) s in aqueous solution. Polym J 26:1019–1026CrossRefGoogle Scholar
  52. Li J, Ni X, Zhou Z, Leong KW (2003) Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly (propylene oxide)-poly (ethylene oxide)-poly (propylene oxide) triblock copolymers and alpha-cyclodextrin. J Am Chem Soc 125:1788–1795CrossRefPubMedGoogle Scholar
  53. Lim DW, Choi SH, Park TG (2000) A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo (lactide) side chains of poly (HEMA-g-OLA) s. Macromol Rapid Commun 21:464–471CrossRefGoogle Scholar
  54. Lue SJ, Hsu J-J, Wei T-C (2008) Drug permeation modeling through the thermo-sensitive membranes of poly (N-isopropylacrylamide) brushes grafted onto micro-porous films. J Membr Sci 321:146–154CrossRefGoogle Scholar
  55. Lutolf M, Lauer-Fields J, Schmoekel H, Metters A, Weber F, Fields G, Hubbell J (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci 100:5413–5418CrossRefPubMedGoogle Scholar
  56. Ma D, Tu K, Zhang L-M (2010) Bioactive supramolecular hydrogel with controlled dual drug release characteristics. Biomacromol 11:2204–2212CrossRefGoogle Scholar
  57. Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F (2013) Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65:1172–1187CrossRefPubMedGoogle Scholar
  58. Mendes PM (2008) Stimuli-responsive surfaces for bio-applications. Chem Soc Rev 37:2512–2529CrossRefPubMedGoogle Scholar
  59. Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev 54:79–98CrossRefPubMedGoogle Scholar
  60. Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859CrossRefGoogle Scholar
  61. Mo R, Sun Q, Xue J, Li N, Li W, Zhang C, Ping Q (2012) Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv Mater 24:3659–3665CrossRefPubMedGoogle Scholar
  62. Motornov M, Tam TK, Pita M, Tokarev I, Katz E, Minko S (2009) Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching ‘smart’ drug delivery systems. Nanotechnology 20:434006CrossRefPubMedGoogle Scholar
  63. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRefGoogle Scholar
  64. Na K, won Kim S, Sun BK, Woo DG, Yang HN, Chung HM, Park KH (2007) Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials 28:2631–2637CrossRefPubMedGoogle Scholar
  65. Otake K, Inomata H, Konno M, Saito S (1990) Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23:283–289CrossRefGoogle Scholar
  66. Oudshoorn MH, Rissmann R, Bouwstra JA, Hennink WE (2007) Synthesis of methacrylated hyaluronic acid with tailored degree of substitution. Polymer 48:1915–1920CrossRefGoogle Scholar
  67. Patenaude M, Hoare T (2012) Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromol 13:369–378CrossRefGoogle Scholar
  68. Pauling L, Corey RB (1953) Two rippled-sheet configurations of polypeptide chains, and a note about the pleated sheets. Proc Natl Acad Sci USA 39:253CrossRefPubMedGoogle Scholar
  69. Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35CrossRefGoogle Scholar
  70. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Delivery RevGoogle Scholar
  71. Roorda W, Bodde H, De Boer A, Junginger H (1986) Synthetic hydrogels as drug delivery systems. Pharmaceutisch Weekblad 8:165–189CrossRefPubMedGoogle Scholar
  72. Ruel-Gariépy E, Leroux JC (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426CrossRefPubMedGoogle Scholar
  73. Santin M, Huang S, Iannace S, Ambrosio L, Nicolais L, Peluso G (1996) Synthesis and characterization of a new interpenetrated poly (2-hydroxyethylmethacrylate)—gelatin composite polymer. Biomaterials 17:1459–1467CrossRefPubMedGoogle Scholar
  74. Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670CrossRefPubMedGoogle Scholar
  75. Schnepp ZA, Gonzalez-McQuire R, Mann S (2006) Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv Mater 18:1869–1872CrossRefGoogle Scholar
  76. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog Polym Sci 36:1254–1276CrossRefGoogle Scholar
  77. Slager J, Domb AJ (2003) Biopolymer stereocomplexes. Adv Drug Deliv Rev 55:549–583CrossRefPubMedGoogle Scholar
  78. Steinberg I, Oplatka A, Katchalsky A (1966) Mechanochemical engines. Nature 210:568–571CrossRefGoogle Scholar
  79. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113.  https://doi.org/10.1038/nmat2614CrossRefPubMedGoogle Scholar
  80. Sun J-Y, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRefPubMedPubMedCentralGoogle Scholar
  81. Takami K, Watanabe J, Takai M, Ishihara K (2011) Spontaneous formation of a hydrogel composed of water-soluble phospholipid polymers grafted with enantiomeric oligo (lactic acid) chains. J Biomater Sci Polym Ed 22:77–89CrossRefPubMedGoogle Scholar
  82. Tan H, Luan H, Hu Y, Hu X (2013) Covalently crosslinked chitosan-poly (ethylene glycol) hybrid hydrogels to deliver insulin for adipose-derived stem cells encapsulation. Macromol Res 21:392–399CrossRefGoogle Scholar
  83. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  84. Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of Chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  85. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847CrossRefPubMedGoogle Scholar
  86. Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 33:1281–1290CrossRefPubMedGoogle Scholar
  87. Tomer R, Dimitrijevic D, Florence AT (1995) Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels. J Control Release 33:405–413CrossRefGoogle Scholar
  88. Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRefPubMedGoogle Scholar
  89. Tsuji H (2005) Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597CrossRefPubMedPubMedCentralGoogle Scholar
  90. VanBemmelen JM (1894) Der Hydrogel und das kristallinische Hydrat des Kupferoxydes. Z Anorg Chem 5:466CrossRefGoogle Scholar
  91. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774CrossRefGoogle Scholar
  92. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242CrossRefGoogle Scholar
  93. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  94. Wong VN, Fernando G, Wagner AR, Zhang J, Kinsel GR, Zauscher S, Dyer DJ (2009) Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir 25:1459–1465CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhang W, Tichy SE, Pérez LM, Maria GC, Lindahl PA, Simanek EE (2003) Evaluation of multivalent dendrimers based on melamine: kinetics of thiol-disulfide exchange depends on the structure of the dendrimer. J Am Chem Soc 125:5086–5094CrossRefPubMedGoogle Scholar
  96. Zhao S-P, Zhang L-M, Ma D (2006) Supramolecular hydrogels induced rapidly by inclusion complexation of poly (varepsilon-caprolactone)-poly (ethylene glycol)-poly (varepsilon-caprolactone) block copolymers with alpha-cyclodextrin in aqueous solutions. J Phys Chem B 110:12225–12229CrossRefPubMedGoogle Scholar
  97. Zhou H, Gan X, Liu T, Yang Q, Li G (2006) Electrochemical study of photovoltaic effect of nano titanium dioxide on hemoglobin. Bioelectrochemistry 69:34–40CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ibrahim M. El-Sherbiny
    • 1
  • Islam A. Khalil
    • 1
    • 2
  • Isra H. Ali
    • 1
  1. 1.Center for Materials Science, University of Science and Technology (UST), Zewail City of Science and Technology6th October City, CairoEgypt
  2. 2.Department of Pharmaceutics and Industrial Pharmacy, College of PharmacyMisr University of Science and Technology (MUST)6th October City, CairoEgypt

Personalised recommendations