Skip to main content

Current Knowledge of Viruses Infecting Papaya and Their Transgenic Management

  • Chapter
  • First Online:
Plant Viruses: Evolution and Management

Abstract

Papaya (Carica papaya L.), native to the South American continent, is an important horticultural crop cultivated across the tropical and subtropical regions of the globe. Papaya is rich source of vitamin-C and globally it is ranked fourth in total fruit production, next only to bananas, oranges and mangoes. India is the leading producer of papaya and both India and Brazil put together account for more than 50 % of global papaya production. Multiple pests and pathogens are known to inflict damage to papaya, of which viral diseases are the most damaging ones. Of all the viral diseases, papaya ring spot virus (PRSV) belonging to the Potyviridae family is most important one, followed by the viruses belonging to the Geminiviridae family causing leaf curl disease in papaya. Other viral diseases of papaya are Papaya meleira virus (PMeV), Papaya mosaic virus (PapMV), Papaya lethal yellowing virus (PLYV) and several other viruses are known to infect papaya, but may not be of economical significance. Management of viral diseases in papaya is very crucial to accomplish a good harvest, and of all the management practices, genetic engineering papaya for virus resistance is most promising and successful. The PRSV resistant transgenic papaya varieties “SunUp” and “Rainbow” developed by the University of Hawaii and extensively cultivated in the Hawaii islands of United States is the most successful field application of transgenic technology. Since there is significant sequence variation in the PRSV strains from different parts of the world and many more diverse range of viruses are known to infect papaya, there is an urgent need to develop region specific virus resistant papaya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abreu PMV, Antunes TFS, Magaña-Álvarez A, Pérez-Brito D, Tapia-Tussell R, Ventura JA, Fernandes AAR, Fernandes PMB (2015) A current overview of the papaya meleira virus, an unusual plant virus. Viruses 7:1853–1870

    Google Scholar 

  • Adsuar J (1946) Studies on virus disease of papaya (Carica papaya) in Puerto Rico, I. Transmission of papaya mosaic. Puerto Rico Agric Exp Stn Tech Pap 1. http://www.cabdirect.org/abstracts/19490500048.html;jsessionid=9E7984618D189DF420E69A502522AE26

  • Akhter MS, Basavaraj YB, Akanda AM, Mandal B, Jain RK (2013) Genetic diversity based on coat protein of papaya ringspot virus (Pathotype P) isolates from Bangladesh. Indian J Virol 24(1):70–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral PP, Resende RO, Júnior MTS (2006) Papaya Lethal Yellowing Virus (PLYV) infects vasconcellea cauliflora. Fitopatol Bras 31:517

    Article  Google Scholar 

  • Araújo MMM, Tavares ET, Silva FR, Marinho VLA, Júnior MTS (2007) Molecular detection of papaya meleira virus in the latex of Carica papaya by RT-PCR. J Virol Methods 146:305–310

    Article  PubMed  Google Scholar 

  • Arguello-Astorga GR, Ruiz-Medrano R (2001) An iteron-related domain is associated to motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid–base pairs by a comparative approach. Arch Virol 146:1465–1485

    Article  CAS  PubMed  Google Scholar 

  • Azad MA, Rabbani MG, Amin L, Sidik NM (2013) Development of transgenic papaya through agrobacterium-mediated transformation. Int J Genomics 2013:1–5

    Article  Google Scholar 

  • Azad MA, Amin L, Sidik NM (2014) Gene technology for papaya ringspot virus disease management. Sci World J 8:1–11

    Google Scholar 

  • Babin C, Majeau N, Leclerc D (2013) Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP. J Nanobiotechnol 11:1–8

    Article  Google Scholar 

  • Bau HJ, Cheng YH, Yu TA, Yang JS, Liou PC, Hsiao CH, Lin CY, Yeh SD (2004) Field evaluation of transgenic papaya lines carrying the coat protein gene of papaya ringspot virus in Taiwan. Plant Dis 88:594–599

    Article  Google Scholar 

  • Bau HJ, Kung YJ, Raja JA, Chan SJ, Chen KC, Chen YK, Wu HW, Yeh SD (2008) Potential threat of a new pathotype of papaya leaf distortion mosaic virus infecting transgenic papaya resistant to papaya ringspot virus. Phytopathology 98:848–856

    Article  CAS  PubMed  Google Scholar 

  • Beachy RN, Loesch-Fries S, Tumer NE (1990) Coat protein-mediated resistance against virus infection. Ann Rev Phytopathol 28:451–474

    Article  CAS  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EO, Mendes EA, Aragao FJ (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726

    Article  CAS  PubMed  Google Scholar 

  • Capoor SP, Varma PM (1948) A mosaic disease of Carica papaya L. in the Bombay province. Current Sci 17:265–266

    Google Scholar 

  • Chakraborty P, Das S, Saha B, Sarkar P, Karmakar A, Saha A, Saha D, Saha A (2015) Phylogeny and synonymous codon usage pattern of Papaya ringspot virus coat protein gene in the sub-Himalayan region of north-east India. Can J Microbiol 26:1–10

    Google Scholar 

  • Chang LS, Lee YS, Su HJ, Hung TH (2003) First report of papaya leaf curl virus infecting papaya plants in Taiwan. Plant Dis 87:204

    Article  Google Scholar 

  • Chen G, Ye CM, Huang JC, Yu M, Li BJ (2001) Cloning of the papaya ringspot virus (PRSV) replicase gene and generation of PRSV-resistant papayas through the introduction of the PRSV replicase gene. Plant Cell Rep 20:272–277

    Article  CAS  Google Scholar 

  • Cheng YH, Yang JS, Yen SD (1996) Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep 16(3–4):127–132

    Article  CAS  PubMed  Google Scholar 

  • Conover RA (1964) Distortion ringspot, a severe disease of papaya in Florida. Proc Fla State Hortic Soc 77:440–444

    Google Scholar 

  • Cruz FCS, Tanada JM, Elvira PRV, Dolores LM, Magdalita PM, Hautea DM, Hautea RA (2009) Detection of mixed virus infection with papaya ringspot virus (PRSV) in papaya (Carica papaya L.) grown in Luzon, Philippines. Philipp J Crop Sci 34:62–74

    Google Scholar 

  • Daltro CB, Abreu EFM, Aragão FJL, Andrade EC (2014) Genetic diversity studies of papaya meleira virus. Trop Plant Pathol 39:104–108

    Article  Google Scholar 

  • Davis MJ, Ying Z (2004) Development of papaya breeding lines with transgenic resistance to Papaya ringspot virus. Plant Dis 88:352–358

    Article  CAS  Google Scholar 

  • de la Riva GA, Gonzalez-Carbrera J, Vazquez-Padron R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1(3):118–133

    Article  Google Scholar 

  • FAOSTAT (2012) Crop production. http://faostat.fao.org/site/567/default.aspx#ancor

  • Fermin G, Inglessis V, Garboza C, Rangel S, Dagert M, Gonsalves D (2004) Engineered resistance against papaya ringspot virus in Venezuelan transgenic papayas. Plant Dis 88(5):516–522

    Google Scholar 

  • Ferwerda-Licha M (2002) Mixed infection of papaya ringspot virus, zucchini yellow mosaic virus and papaya bunchy top affecting papaya (Carica papaya L.) in Puerto Rico. Phytopathology 92(6):S25

    Google Scholar 

  • Fitch MMM, Manshardt RM (1990) Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Rep 9(6):320–324

    Article  CAS  PubMed  Google Scholar 

  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep; 9(4):189–194

    Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL (1993) Transgenic papaya plants from agrobacterium – mediated transformation of somatic embryos. Plant Cell Rep 12(5):245–249

    Article  CAS  PubMed  Google Scholar 

  • Folimonova SY (2013) Developing an understanding of cross-protection by Citrus tristeza virus. Front Microbiol 4:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontes EP, Eagle PA, Sipe PS, Luckow VA, Hanley- Bowdoin L (1994a) Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269:8459–8465

    CAS  PubMed  Google Scholar 

  • Fontes EP, Gladfelter HJ, Schaffer RL, Petty IT, Hanley- Bowdoin L (1994b) Geminivirus replication origins have a modular organization. Plant Cell 6:405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202

    Article  CAS  PubMed  Google Scholar 

  • Golemboski DB, Lomonossoff GP, Zaitlin M (1990) Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci U S A 87(16):6311–6315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves D, Trujillo EE (1986) Tomato spotted wilt virus in papaya and detection of the virus by ELISA. Plant Dis 70:501–506

    Article  Google Scholar 

  • Gonsalves D, Gonsalves C, Ferreira S, Pitz K, Fitch M, Manshardt R, Slightom J (2004) Transgenic virus resistant papaya: from hope to reality for controlling of papaya ringspot virus in Hawaii. APS net Feature, July and August: http://www.apsnet.org/online/feature/ringspot

  • Grumet R (1990) Genetically engineered plant virus resistance. Hort Sci 25(5):508–513

    CAS  Google Scholar 

  • Haireen M, Razean R, Drew RA (2014) Isolation and characterisation of PRSV-P resistance genes in Carica and Vasconcellea. Int J Genomics 2014:1–8

    Article  Google Scholar 

  • Hamama L, Voisine L, Peltier D, Boccon-Gibod J (2011) Shoot regeneration and genetic transformation by agrobacterium tumefaciens of hydrangea macrophylla Ser. leaf discs. Sci Hortic 127(3):378–387

    Article  CAS  Google Scholar 

  • Hansen GR, Shillito D, Chilton M-D (1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc Natl Acad Sci U S A 94(21):11726–11730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez R, Suazo M, Toledo P (1990) The papaya apical necrosis virus, a new viral disease in Villa Clara Cuba. Cienc Tec Agric Prot Plantas 13:29–36

    Google Scholar 

  • Herold F, Weibel J (1962) Electron microscopic demonstration of papaya ringspot virus. Virology 18:307–311

    Article  Google Scholar 

  • Jensen DD (1949a) Papaya virus diseases with special reference to papaya ringspot. Phytopathology 39:191–211

    Google Scholar 

  • Jensen DD (1949b) Papaya ringspot virus and its insect vector relationship. Phytopathology 39:212–220

    Google Scholar 

  • Kitajima EW, Rodrigues CH, Silveira JS, Alves F, Ventura JA, Aragao FJL, Oliveira LHR (1993) Association of isometric virus like particles, restricted to laticifers, with “meleira” (“sticky disease”) of papaya (Carica papaya). Fitopatol Bras 18:118–122

    Google Scholar 

  • Kung YJ, Bau HJ, Wu YL, Huang CH, Chen TM, Yeh SD (2009) Generation of transgenic papaya with double resistance to papaya ringspot virus and papaya leaf-distortion mosaic virus. Phytopathology 99(11):1312–1320

    Article  CAS  PubMed  Google Scholar 

  • Kung YJ, Yu TA, Huang CH, Wang HC, Wang SL, Yeh SD (2010) Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res 19(4):621–635

    Article  CAS  PubMed  Google Scholar 

  • Lana AF (1980) Transmission and properties of virus isolated from Carica papaya in Nigeria. J Hortic Sci 55:191–197

    Article  Google Scholar 

  • Lazarowitz SG (1992) Geminiviruses: genome structure and gene function. Crit Rev Plant Sci 11:327–349

    Article  CAS  Google Scholar 

  • Lu YW, Shen WT, Zhou P, Tang QJ, Niu YM, Peng M, Xiong Z (2008) Complete genomic sequence of a papaya ringspot virus isolate from Hainan Island, China. Arch Virol 153:991–993

    Article  CAS  PubMed  Google Scholar 

  • Maciel-Zambolim E, Kunieda-Alonso S, Matsuoka K, de Carvalho M, Zerbini F (2003) Purification and some properties of papaya meleira virus, a novel virus infecting papayas in Brazil. Plant Pathol 52:389–394

    Article  CAS  Google Scholar 

  • Manshardt RM (1992) Papaya. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CABI, London, pp 489–511

    Google Scholar 

  • Maoka T, Kashiwazaki S, Tsuda S, Usugi T, Hibino H (1996) Nucleotide sequence of the capsid protein gene of papaya leaf-distortion mosaic potyvirus. Arch Virol 141:197–204

    Article  CAS  PubMed  Google Scholar 

  • Martinez JE, Cotes JM, Marin MM (2010) Detection serologically molecular de virus en afidos asociados a cultivos de tomate de arbol con sintomas de virosis en Antioquia y Narino (Colombia). Rev Fac Cienc Basica 6(2):182–197

    Google Scholar 

  • Mishra M, Shukla N, Chandra R (2010) Role of polyethylene glycol in maturation and germination of transformed somatic embryos of papaya (Carica papaya L.). Acta Hort 851:227–2303

    Article  Google Scholar 

  • Mishra R, Verma RK, Pooja S, Choudhary DK, Gaur RK (2014) Interaction between viral proteins with the transmission of Potyvirus. Arch Phytopathol Plant Protect 47(2):240–253

    Article  CAS  Google Scholar 

  • Nascimento AKQ, Lima JAA, Nascimento ALL, Beserra JE Jr, Purcifull DE (2010) Biological, physical, and molecular properties of a papaya lethal yellowing virus isolate. Plant Dis 94:1206–1212

    Article  CAS  Google Scholar 

  • Noa-Carrazana JC, González-de-León D, Ruiz-Castro BS, Piñero D, Silva-Rosales L (2006) Distribution of papaya ringspot virus and papaya mosaic virus in papaya plants (Carica papaya) in Mexico. Plant Dis 90:1004–1011

    Article  Google Scholar 

  • Nunome T, Fukumoto F, Terami F, Hanada K, Hirai M (2002) Development of breeding materials of transgenic tomato plants with a truncated replicase gene of cucumber mosaic virus for resistance to the virus. Breed Sci 52(3):219–223

    Article  CAS  Google Scholar 

  • Pang SZ, Sanford J (1988) Agrobacterium mediated transformation in papaya. J Am Soc Hortic Sci 113(2):287–291

    CAS  Google Scholar 

  • Patil BL, Fauquet CM (2009) Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol Plant Pathol 10(5):685–701

    Article  CAS  PubMed  Google Scholar 

  • Patil BL, Ogwok E, Wagaba H, Mohammed IU, Yadav JS, Bagewadi B, Taylor NJ, Kreuze JF, Maruthi MN, Alicai T, Fauquet CM (2011) RNAi-mediated resistance to diverse isolates belonging to two virus species involved in Cassava brown streak disease. Mol Plant Pathol 12(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Patil BL, Bagewadi B, Yadav JS, Fauquet CM (2016) Mapping and identification of cassava mosaic geminivirus genome sequences for efficient siRNA expression and RNAi based virus resistance by transient agro-infiltration studies. Virus Res 213:109–115

    Article  CAS  PubMed  Google Scholar 

  • Pereira AJ, Alfenas-Zerbini P, Cascardo RS, Andrade EC, Murilo Zerbini F (2012) Analysis of the full-length genome sequence of papaya lethal yellowing virus (PLYV), determined by deep sequencing, confirms its classification in the genus Sobemovirus. Arch Virol 157:2009–2011

    Article  CAS  PubMed  Google Scholar 

  • Perez-Brito D, Tapia-Tussell R, Cortes-Velazquez A, Quijano-Ramayo A, Nexticapan-Garcez A, Martín-Mex R (2012) First report of Papaya meleira virus (PMeV) in Mexico. Afr J Biotechnol 11:13564–13570

    Article  CAS  Google Scholar 

  • Pramesh D, Mandal B, Phaneendra C, Muniyappa V (2013) Host range and genetic diversity of croton yellow vein mosaic virus, a weed-infecting monopartite begomovirus causing leaf curl disease in tomato. Arch Virol 158:531–542

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9(1):73–83

    CAS  PubMed  Google Scholar 

  • Reddy DV, Sudarshana MR, Fuchs M, Rao NC, Thottappilly G (2009) Genetically engineered virus-resistant plants in developing countries: current status and future prospects. Adv Virus Res 75:185–220

    Article  CAS  PubMed  Google Scholar 

  • Rey MEC, Ndunguru J, Berrie LC, Paximadis M, Berry S, Cossa N, Nuaila VN, Mabasa KG, Abraham N, Rybicki EP, Darren M, Pietersen G, Esterhuizen LL (2012) Diversity of dicotyledenous-infecting geminiviruses and their associated DNA molecules in Southern Africa, including the south-west Indian Ocean islands. Viruses 4(9):1753–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CH, Ventura JA, Maffia LA (1989) Distribuição e transmissão da meleira em pomares de mamão no Espírito Santo. Fitopatol Bras 14:118

    Google Scholar 

  • Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  CAS  PubMed  Google Scholar 

  • Seal SE, vanden Bosch F, Jeger MJ (2006) Factors influencing begomovirus evolution and their increasing global significance: implications for sustainable control. Crit Rev Plant Sci 25:23–46

    Article  Google Scholar 

  • Shen W, Yang G, Chen Y, Yan P, Tuo D, Li X, Zhou P (2014) Resistance of non-transgenic papaya plants to papaya ringspot virus (PRSV) mediated by intron-containing hairpin dsRNAs expressed in bacteria. Acta Virol 58(3):261–266

    Article  CAS  PubMed  Google Scholar 

  • Singh AB (1969) A new virus diseases of Carica papaya in India. Plant Dis Rep 33:767–769

    Google Scholar 

  • Singh-Pant P, Pant P, Mukherjee SK, Mazumdar-Leighton S (2012) Spatial and temporal diversity of begomoviral complexes in papayas with leaf curl disease. Arch Virol 57(7):1217–1232

    Article  Google Scholar 

  • Sudarshana MR, Roy G, Falk BW (2007) Methods for engineering resistance to plant viruses. Methods Mol Biol 354:183–195

    CAS  PubMed  Google Scholar 

  • Tennant PF, Gonsalves C, Ling KS, Fitch M, Manshardt R, Slightom JL, Gonsalves D (1994) Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 84(11):1359–1366

    Article  Google Scholar 

  • Thomas JE, Dodman RL (1993) The first record of papaya ringspot virus-type P in Australia. Aust Plant Pathol 22:2–7

    Article  Google Scholar 

  • Thomas KM, Krishnaswami CS (1939) Leaf crinkle—a transmissible disease of papaya. Curr Sci 8:316

    Google Scholar 

  • Tricoli DM, Carney KJ, Russell PF, Mcmaster JR, Groff DW, Hadden KC, Himmel PT, Hubbard JP, Boeshore ML, Quemada HD (1995) Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus. Nat Biotechnol 13:1458–1465

    Article  CAS  Google Scholar 

  • Tripathi S, Suzuki JY, Ferreira SA, Gonsalves D (2008) Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Pathol 9:269–280

    Article  CAS  PubMed  Google Scholar 

  • Tuo D, Shen W, Yan P, Li C, Gao L, Li X, Li H, Zhou P (2013) Complete genome sequence of an isolate of papaya leaf distortion mosaic virus from commercialized PRSV-resistant transgenic papaya in China. Acta Virol 57:452–455

    Article  CAS  PubMed  Google Scholar 

  • Tuo D, Shen W, Yang Y, Yan P, Li X, Zhou P (2014) Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya viruses. Viruses 6:3893–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varsani A, Navas-Castillo J, Moriones E, Hernández-Zepeda C, Idris A, Brown JK, Murilo Zerbini F, Martin DP (2014) Establishment of three new genera in the family geminiviridae: becurtovirus, eragrovirus and turncurtovirus. Arch Virol 159:2193–2203

    Article  CAS  PubMed  Google Scholar 

  • Ventura JA, Costa H, Tatagiba JS, Andrade JS, Martins DS (2003) Meleira do mamoeiro: Etiologia, sintomas e epidemiologia. In: Martins DS (ed) Papaya Brasil: Qualidade do Mamão Para o Mercado Interno. Incaper, Vitória, pp 267–276

    Google Scholar 

  • Wan SH, Conover RA (1983) Incidence and distribution of papaya viruses in Southern Florida. Plant Dis 67:353–356

    Article  Google Scholar 

  • Wang HL, Wang CC, Chiu RJ, Sun MH (1978) Preliminary study on papaya ringspot virus in Taiwan. Plant Prot Bull 20:133–140

    Google Scholar 

  • Wang Y, Shen W, Wang S, Tuo D, Yan P, Li X, Zhou P (2013) Complete genomic sequence of papaya mosaic virus isolate from Hainan Island, China. Chin J Trop Crops 34:297–300

    Google Scholar 

  • Waterhouse PM, Wang M-B, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Lan C, Lu Z, Ye C (2007) Analysis on virus resistance and fruit quality for T4 generation of transgenic papaya. Front Biol Chin 2(3):284–290

    Article  Google Scholar 

  • Yeh SD, Gonsalves D (1984) Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74:1086–1091

    Article  Google Scholar 

  • Zlotorynski E (2015) Plant cell biology: CRISPR-Cas protection from plant viruses. Nat Rev Mol Cell Biol 16(11):642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

BLP and RM would like to acknowledge the funding from ICAR-Network Projects on Transgenics in Crops.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basavaprabhu L. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Mishra, R., Gaur, R.K., Patil, B.L. (2016). Current Knowledge of Viruses Infecting Papaya and Their Transgenic Management. In: Gaur, R., Petrov, N., Patil, B., Stoyanova, M. (eds) Plant Viruses: Evolution and Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-1406-2_11

Download citation

Publish with us

Policies and ethics