Skip to main content

Formaldehyde Exposure and Neuropsychiatric Disorders

  • Chapter
  • First Online:
Formaldehyde and Cognition

Abstract

Formaldehyde is getting more widely used in modern industrial and information society. Exposure to ambient air pollution is a serious and common public health concern. The high risk of formaldehyde exposure often occurs in the occupational settings, including scientific laboratories in hospitals and universities, particle board/plywood plants, fire sites, etc. Despite the data showing workplace formaldehyde exposures well below those typically considered risks to health, workers complained psychiatric disorders more frequently, and the syndromes could be rescued after leaving the workplace for a period of time. In addition to the occupational formaldehyde exposure sites, urea-formaldehyde resins in building and furnishing materials contributes to the major component of indoor air pollution where people act and live in newly decorated houses and rooms. More people are at high risk of long-term and low-level formaldehyde exposure because of the low ventilation rate indoor. Epidemiological studies show that people complain a series of neuropsychiatric symptoms, such as depression, anxiety, sleep disorders, malaise, balance dysfunctions, headache, indigestion, lethargy, decrease in motor activity and loss of appetite. All those further confirmed that the neuropsychiatric symptoms are highly related to the long-term formaldehyde exposure in the air. In the case of long-term formaldehyde exposure, the victims (17 males, 20 females; average age of 38 years old) mainly showed anxiety symptoms. Around 60.7% of them had elevated levels of urine formaldehyde compared with the normal control. In other words, it is necessary to determine and monitor endogenous formaldehyde for the victims suffering a long-term exposure. Although exogenous formaldehyde causes depression, anxiety and circadian rhythm disorders, whether endogenous formaldehyde induces those symptoms is still unclear. Here, we discuss the effects of formaldehyde exposure on psychosomatic behaviours such as rhythm disorders, depression, anxiety and other behavioural disorders except for cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ailshire JA, Clarke P (2015) Fine particulate matter air pollution and cognitive function among US older adults. J Gerontol B-Psychol 70:322–328

    Article  Google Scholar 

  • Ailshire JA, Crimmins EM (2014) Fine particulate matter air pollution and cognitive function among older US adults. Am J Epidemiol 180:359–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Apfelbach R, Weiler E(1991) Sensitivity to odors in Wistar rats is reduced after low-level formaldehyde-gas exposure.Naturwissenschaften 78:221–223

    Google Scholar 

  • Aronsson M, Fuxe K, Dong Y, Agnati LF, Okret S (1988) Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization. Proc Natl Acad Sci U S A 85:9331–9335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslan H, Songur A, Tunc AT, Ozen OA, Bas O, Yagmurca M, Turgut M, Sarsilmaz M, Kaplan S (2006) Effects of formaldehyde exposure on granule cell number and volume of dentate gyrus: a histopathological and stereological study. Brain Res 1122:191–200

    Article  CAS  PubMed  Google Scholar 

  • Bayer AU, Ferrari F, Erb C (2002) High occurrence rate of glaucoma among patients with. Alzheimer’s Dis 47(3):165–168

    CAS  Google Scholar 

  • Bhatt HV, Panchal GM (1992) Behavioural change in rats due to chronic oral and systemic formaldehyde. Indian J Physiol Pharmacol 36:270–272

    CAS  PubMed  Google Scholar 

  • Bodnoff SR, Humphreys AG, Lehman JC, Diamond DM, Rose GM, Meaney MJ (1995) Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. J Neurosci 15:61–69

    CAS  PubMed  Google Scholar 

  • Boja JW, Nielsen JA, Foldvary E, Truitt EB Jr (1985) Acute low-level formaldehyde behavioral and neurochemical toxicity in the rat. Prog Neuro Psychopharmacol Biol Psychiat 9:671–674

    Article  CAS  Google Scholar 

  • Chen XX, Su T, He YG, He RQ (2017) Spatial cognition decline caused by excess formaldehyde in the lysosome Prog Biochem Biophys. doi:10.16476/j.pibb.2017.0050

  • Coderre TJ, Abbott FV, Melzack R (1984) Effects of peripheral antisympathetic treatments in the tail-flick, formalin and autotomy tests. Pain 18(1):13–23

    Article  CAS  PubMed  Google Scholar 

  • Cogliano VJ, Grosse Y, Baan RA, Straif K, Secretan MB, El Ghissassi F, Working Group for, V (2005) Meeting report: summary of IARC monographs on formaldehyde, 2-butoxyethanol, and 1-tert-butoxy-2-propanol. Environ Health Perspect 113:1205–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Su T, Zhang SD, Huang P, He YG, Liu Y, Zhang C, He RQ (2016). The elevated urine formaldehyde level in elderly patients with primary open angle glaucoma. Int J Ophthalmol 18;9(3):411–416

    Google Scholar 

  • Dallman MF, Akana SF, Laugero KD, Gomez F, Manalo S, Bell ME, Bhatnagar SA (2003) Spoonful of sugar: feedback signals of energy stores and corticosterone regulate responses to chronic stress. Physiol Behav 79:3–12

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Rose GM (1994) Stress impairs LTP and hippocampal-dependent memory. Ann N Y Acad Sci 746:411–414

    Article  CAS  PubMed  Google Scholar 

  • Dutra MM, Godin AM, Cse GM (1994) Stress impairs LTP and hippocampal-dependent memory. Annals of the new York Academy of Sciences 746, 411-414.Olitan areas: Nashville, Atlanta, Houston, Philadelphia, and Tampa. Environmental science & troup, in the experimental model of pain induced by formaldehyde in mice. Pharmacol Biochem Behav 106:85–90

    Article  Google Scholar 

  • Fang F, Quinlan P, Ye W, Barber MK, Umbach DM, Sandler DP, Kamel F (2009) Workplace exposures and the risk of amyotrophic lateral sclerosis. Environ Health Perspect 117:1387–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  CAS  PubMed  Google Scholar 

  • Gibson PR, Vogel VM (2009) Sickness-related dysfunction in persons with self-reported multiple chemical sensitivity at four levels of severity. J Clin Nurs 18:72–81

    Article  PubMed  Google Scholar 

  • Godin AM, Araújo DP, César IC, Menezes RR, Brito AM, Melo IS, Coura GM, Bastos LF, Almeida MO, Byrro RM, Matsui TC, Batista CR, Pianetti GA, de Fátima Â, Machado RR, Coelho MM (2015) Activities of 2-phthalimidethyl nitrate and 2-phthalimidethanol in the models of nociceptive response and edema induced by formaldehyde in mice and preliminary investigation of the underlying mechanisms.Eur J Pharmacol 756:59–66

    Google Scholar 

  • Hayashi H, Kunugita N, Arashidani K, Fujimaki H, Ichikawa M (2004) Long-term exposure to low levels of formaldehyde increases the number of tyrosine hydroxylase-immunopositive periglomerular cells in mouse main olfactory bulb. Brain Res 1007:192–197

    Article  CAS  PubMed  Google Scholar 

  • Hisamitsu M, Okamoto Y, Chazono H, Yonekura S, Sakurai D, Horiguchi S, Hanazawa T, Terada N, Konno A, Matsuno Y et al (2011) The influence of environmental exposure to formaldehyde in nasal mucosa of medical students during cadaver dissection. Allergol Int 60:373–379

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59(10):1006–1023

    Article  CAS  PubMed  Google Scholar 

  • Huot RL, Gonzalez ME, Ladd CO, Thrivikraman KV, Plotsky PM (2004) Foster litters prevent hypothalamic pituitary adrenal axis sensitization mediated by neonatal maternal separation. Psychoneuroendocrinol 29:279–289

    Article  CAS  Google Scholar 

  • Kilburn KH (1994) Neurobehavioral impairment and seizures from formaldehyde. Arch Environ Health 49:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kilburn KH, Warshaw RH (1992) Neurobehavioral effects of formaldehyde and solvents on histology technicians: repeated testing across time. Environ Res 58:134–146

    Google Scholar 

  • Kilburn KH, Seidman BC, Warshaw R (1985a) Neurobehavioral and respiratory symptoms of formaldehyde and xylene exposure in histology technicians. Arch Environ Health 40:229–233

    Article  CAS  PubMed  Google Scholar 

  • Kilburn KH, Warshaw R, Boylen CT, Johnson SJ, Seidman B, Sinclair R, Takaro T Jr (1985b) Pulmonary and neurobehavioral effects of formaldehyde exposure. Arch Environ Health 40:254–260

    Article  CAS  PubMed  Google Scholar 

  • Kilburn KH, Warshaw R, Thornton JC (1987) Formaldehyde impairs memory, equilibrium, and dexterity in histology technicians: effects which persist for days after exposure. Arch Environ Health 42:117–120

    Article  CAS  PubMed  Google Scholar 

  • Kilburn KH, Thornton JC, Hanscom B (1998) Population-based prediction equations for neurobehavioral tests. Arch Environ Health 53:257–263

    Article  CAS  PubMed  Google Scholar 

  • Kitraki E, Kremmyda O, Youlatos D, Alexis MN, Kittas C (2004) Gender dependent alterations in corticosteroid receptor status and spatial performance following 21 days of restraint stress. Neuroscience 125:47–55

    Article  CAS  PubMed  Google Scholar 

  • Lang I, Bruckner T, Triebig G (2008) Formaldehyde and chemosensory irritation in humans: a controlled human exposure study. Regul Toxicol Pharmacol 50:23–36

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Kim HJ, Lee M, Jin SH, Hong SH, Ahn S, Kim SO, Shin DW, Lee ST, Noh M (2016) Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol 310:185–194

    Article  CAS  PubMed  Google Scholar 

  • Li T, Qiang M, He RQ (2012) Chronic dehydration and regularly drinking water to mitigate age-related cognitive impairment. Acta Neuropharmacologica 2(3):43–51

    Google Scholar 

  • Li G, Yang J, Ling S (2015) Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb. Inhal Toxicol 27:387–393

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Song Z, Ding Y, Xin Y, Wu T, Su T, He R, Tai F, Lian Z (2016a) Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice. Chemosphere 144:2004–2012

    Article  CAS  PubMed  Google Scholar 

  • Li T, Su T, He Y-G, He R-Q (2016b) Chronic-dehydrated dysmetabolism of formaldehyde in mouse brain and decline of learning in the shuttle box. Prog Biochem Biophys 43:429–438

    Google Scholar 

  • Li T, Su T, He Y, Lu J, Mo W, Wei Y, He R (2016c) Brain formaldehyde is related to water intake behavior. Aging and disease 7:561–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberwirth C, Pan Y, Liu Y, Zhang Z, Wang Z (2016) Hippocampal adult neurogenesis: its regulation and potential role in spatial learning and memory. Brain Res 1644:127–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ye ZL, Luo HZ, Sun M, Li M, Fan DS, Chui DH (2009) Inhalative formaldehyde exposure enhances aggressive behavior and disturbs monoamines in frontal cortex synaptosome of male rats. Neurosci Lett 464:113–116

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chan KK, Chan W (2016) Identification of protein Thiazolidination as a novel molecular signature for oxidative stress and formaldehyde exposure. Chem Res Toxicol 29:1865–1871

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Li CM, Qiao Y, Yan Y, Yang X (2008) Effect of inhaled formaldehyde on learning and memory of mice. Indoor Air 18:77–83

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Collins LB, Ru H, Bermudez E, Swenberg JA (2010) Distribution of DNA adducts caused by inhaled formaldehyde is consistent with induction of nasal carcinoma but not leukemia. Toxicol Sci 116:441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu K, Moeller B, Doyle-Eisele M, McDonald J, Swenberg JA (2011) Molecular dosimetry of N2-hydroxymethyl-dG DNA adducts in rats exposed to formaldehyde. Chem Res Toxicol 24:159–161

    Article  CAS  PubMed  Google Scholar 

  • Madrid PA, Sinclair H, Bankston AQ, Overholt S, Brito A, Domnitz R, Grant R (2008) Building integrated mental health and medical programs for vulnerable populations post-disaster: connecting children and families to a medical home. Prehosp Disaster Med 23:314–321

    Article  PubMed  Google Scholar 

  • Makino S, Hashimoto K, Gold PW (2002) Multiple feedback mechanisms activating corticotropin -releasing hormone system in the brain during stress. Phamacol Biochem Behav 73:147–158

    Article  CAS  Google Scholar 

  • Malek FA, Moritz KU, Fanghanel J (2003a) Formaldehyde inhalation & open field behaviour in rats. Indian J Med Res 118:90–96

    CAS  PubMed  Google Scholar 

  • Malek FA, Moritz KU, Fanghanel J (2003b) A study on the effect of inhalative formaldehyde exposure on water labyrinth test performance in rats. Ann Anat Anatomischer Anzeiger 185:277–285

    Google Scholar 

  • Malek FA, Moritz KU, Fanghanel J (2004) Effects of a single inhalative exposure to formaldehyde on the open field behavior of mice. Int J Hyg Environ Health 207:151–158

    Article  CAS  PubMed  Google Scholar 

  • Maurizi CP (1987) Dementia– The failure of hippocampal plasticity and dreams. Is there a preventative role for melatonin? Med Hypotheses 24:59–68

    Article  CAS  PubMed  Google Scholar 

  • McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM et al (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104:13525–13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Y, Jiang C, Wan Y, Lv J, Jia J, Wang X, Yang X, Tong Z (2015) Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell 14:659–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Y, Duan C, Li X, Zhao Y, Cao F, Shang S, Ding S, Yue X, Gao G, Yang H et al (2016) Reduction of endogenous melatonin accelerates cognitive decline in mice in a simulated occupational formaldehyde exposure environment. Int J Environ Res Pub Health 13

    Google Scholar 

  • Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10:283–294

    Article  CAS  PubMed  Google Scholar 

  • Moussavi M, Mowla D, Edraki H (2002) Chemical pretreatment of formaldehyde-containing effluents. Environ Sci Technol 36:3822–3826

    Article  CAS  PubMed  Google Scholar 

  • Nielsen GD, Larsen ST, Wolkoff P (2013) Recent trend in risk assessment of formaldehyde exposures from indoor air. Arch Toxicol 87:73–98

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Cha DS, Jeon H (2011) Antinociceptive and hypnotic properties of Celastrus orbiculatus. J Ethnopharmacol 137:1240–1244

    Article  PubMed  Google Scholar 

  • Parks SH, Pilisuk M (1991) Caregiver burden: gender and the psychological costs of caregiving. Am J Orthopsychiatry 61:501–509

    Article  CAS  PubMed  Google Scholar 

  • Perna RB, Bordini EJ, Deinzer-Lifrak M (2001) A case of claimed persistent neuropsychological sequelae of chronic formaldehyde exposure: clinical, psychometric, and functional findings. Arch Clin Neuropsychol 16:33–44

    Article  CAS  PubMed  Google Scholar 

  • Pinkerton LE, Hein MJ, Meyers A, Kamel F (2013) Assessment of ALS mortality in a cohort of formaldehyde-exposed garment workers. Amyotroph Lateral Scler Frontotemporal Degener 14:353–355

    Article  PubMed  Google Scholar 

  • Rahman AF, Takahashi M, Kaneto H (1994a) Involvement of pain associated anxiety in the development of morphine tolerance in formalin treated mice. Jpn J Pharmacol 65:313–317

    Article  CAS  PubMed  Google Scholar 

  • Rahman AFMM, Takahashi M, Kaneto H (1994b) Morphine-dependence with or without tolerance in formalin-treated mice - further evidence for the dissociation. Jpn J Pharmacol 66:277–280

    Article  CAS  PubMed  Google Scholar 

  • Raone A, Cassanelli A, Scheggi S, Rauggi R, Danielli B, De Montis MG (2007) Hypothalamus-pituitary-adrenal modifications consequent to chronic stress exposure in an experimental model of depression in rats. Neuroscience 146:1734–1742

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, Pearce PT, Funder JW, Krozowski ZS (1989) Type I and type II corticosteroid receptor gene expression in the rat: effect of adrenalectomy and dexamethasone administration. Mol Endocrinol 3:1674–1680

    Article  CAS  PubMed  Google Scholar 

  • Roberts AL, Johnson NJ, Cudkowicz ME, Eum KD, Weisskopf MG (2016) Job-related formaldehyde exposure and ALS mortality in the USA. J Neurol Neurosurg Psychiatry 87:786–788

    Article  PubMed  Google Scholar 

  • Rodgers RJ, Nikulina EM, Cole JC (1994) Dopamine D1 and D2 receptor ligands modulate the behaviour of mice in the elevated plus maze. Pharmacol Biochem Behav 49:985–995

    Article  CAS  PubMed  Google Scholar 

  • Savolarnin H (1977) Some aspects of the mechanisms by which industrial solvents produce neurotoxic effects. Chem Biol Interact 18:1–10

    Google Scholar 

  • Skene DJ, Vivien-Roels B, Sparks DL, Hunsaker JC, Pevet P, Ravid D, Swaab DF (1990) Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease. Brain Res 528:170–174

    Article  CAS  PubMed  Google Scholar 

  • Song MS, Baker GB, Dursun SM, Todd KG (2010) The antidepressant phenelzine protects neurons and astrocytes against formaldehyde-induced toxicity. J Neurochem 114:1405–1413

    CAS  PubMed  Google Scholar 

  • Sorg BA, Bailie TM, Tschirgi ML, Li N, Wu WR (2001a) Exposure to repeated low-level formaldehyde in rats increased basal corticosterone levels and enhances the corticosterone response to subsequent formaldehyde. Brain Res 898:314–320

    Article  CAS  PubMed  Google Scholar 

  • Sorg BA, Tschirgi ML, Swindell S, Chen L, Fang J (2001b) Repeated formaldehyde effects in an animal model for multiple chemical sensitivity. Ann N Y Acad Sci 933:57–67

    Article  CAS  PubMed  Google Scholar 

  • Sparks PJ, Simon GE, Katon WJ, Altman LC, Ayars GH, Johnson RL (1990) An outbreak of illness among aerospace workers. West J Med 153(1):28–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Liang Y (2015) Foliar uptake and translocation of formaldehyde with bracket plants (Chlorophytum comosum). J Hazard Mater 291:120–128

    Article  CAS  PubMed  Google Scholar 

  • Swenberg JA, Lu K, Moeller BC, Gao L, Upton PB, Nakamura J, Starr TB (2011) Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol Sci 120(Suppl 1):S130–S145

    Article  CAS  PubMed  Google Scholar 

  • Testa A, Giannuzzi R, Sollazzo F, Petrongolo L, Bernardini L, Daini S (2013) Psychiatric emergencies (part I): psychiatric disorders causing organic symptoms. (PDF). Eur Rev Med Pharmacol Sci 17(Suppl 1):55–64

    PubMed  Google Scholar 

  • Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    Google Scholar 

  • Tong Z, Luo W, Wang Y, Yang F, Han Y, Li H, Luo H, Duan B, Xu T, Maoying Q et al (2010) Tumor tissue-derived formaldehyde and acidic microenvironment synergistically induce bone cancer pain. PLoS One 5:e10234

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsilis AG, Tsilidis KK, Pelidou SH, Kitsos G (2014) Systematic review of the association between Alzheimer’s disease and chronic glaucoma. Clin Ophthalmol 8:2095–2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Tulpule K, Dringen R (2013) Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem 127:7–21

    CAS  PubMed  Google Scholar 

  • Tulpule K, Schmidt MM, Boecker K, Goldbaum O, Richter-Landsberg C, Dringen R (2012) Formaldehyde induces rapid glutathione export from viable oligodendroglial OLN-93 cells. Neurochem Int 61:1302–1313

    Article  CAS  PubMed  Google Scholar 

  • von Ehrenstein OS, Aralis H, Cockburn M, Ritz B (2014) In utero exposure to toxic air pollutants and risk of childhood autism. Epidemiology 25:851–858

    Article  Google Scholar 

  • Weber R, Budmiger H, Siegenthaler W (1988) Chronic formaldehyde exposure--a misunderstood disease? Schweiz Med Wochenschr 118:457–461

    CAS  PubMed  Google Scholar 

  • Weisskopf MG, Morozova N, O’Reilly EJ, McCullough ML, Calle EE, Thun MJ, Ascherio A (2009) Prospective study of chemical exposures and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 80:558–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CW, Lees-Haley PR (1998) Research on chronic, low-level exposure to formaldehyde: implications for neuropsychological assessment. J Clin Psychol 54:851–862

    Article  CAS  PubMed  Google Scholar 

  • Worek F, Reiter G, Eyer P, Szinicz L (2002) Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates. Arch Toxicol 76:523–529

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2009) Pharmacological treatment of mental disorders in primary health care (PDF). Geneva. ISBN 978–92–4-154769-7

    Google Scholar 

  • Xiong J, Zhu MX (2016) Regulation of lysosomal ion homeostasis by channels and transporters. Sci China Life Sci 59(8):777–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman A, Khan MSS, Akter L, Syeed SH, Akter J, Al Mamun A, Alam ME, Habib MA, Jalil MA (2015) Exploring new pharmacology and toxicological screening and safety evaluation of one widely used formulation of Nidrakar Bati from South Asia region. Bmc Complem Altern M 15

    Google Scholar 

  • Zendehdel R, Fazli Z, Mazinani M (2016) Neurotoxicity effect of formaldehyde on occupational exposure and influence of individual susceptibility to some metabolism parameters. Environ Monit Assess 188:648

    Article  PubMed  Google Scholar 

  • Zhang Q, Yan W, Bai Y, Zhu Y, Ma J (2014) Repeated formaldehyde inhalation impaired olfactory function and changed SNAP25 proteins in olfactory bulb. Int J Occup Environ Health 20:308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JN, Liu YJ. (2012) Circadian rhythm of melatonin and Alzheimer’s disease. Prog Biochem Biophys 39:796–803

    Google Scholar 

  • Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adiposic, and aphagic. Cell 83:1197e1209

    Google Scholar 

  • Zhuang XX, Gross C, Santarelli L, Compan V, Trillat AC, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21:S52–S60

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Key Research and Development Program of China (2016YFC1306300), the National Basic Research Program of China (973 Program) (2012CB911004), the Beijing Municipal Science and Technology Project (Z161100000217141; Z161100000216137), the National Natural Science Foundation of China (NSFC 31270868), the Foundation of Chinese Academy of Sciences (CAS-20140909) and the Queensland-Chinese Academy of Sciences Biotechnology Fund (GJHZ201302).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqiao He .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, X., He, R. (2017). Formaldehyde Exposure and Neuropsychiatric Disorders. In: Formaldehyde and Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1177-5_10

Download citation

Publish with us

Policies and ethics