Skip to main content

The Use of Nonclassical Techniques in the Production of Secondary Metabolites by Plant Tissue Cultures

  • Chapter
Biotechnology and Pharmacy
  • 395 Accesses

Abstract

Plant tissue culture is considered to be an economically viable means for producing secondary metabolites with a commercial value of over $1,000 per kilo. The major category of such compounds is the pharmaceuticals, where such a compound may constitute the pharmaceutically active agent or a formulation (flavoring or coloring) agent. Although the isolation of these metabolites from cultivated or collected plant material is often the method of choice, there are many cases in which cultivation of the plant is difficult (e.g., Chondodendron tomentosum), or acquisition of the desired metabolites would endanger the species (e.g., Taxus brevifolia) In all such cases tissue culture represents a viable alternative for the production of compounds that are not synthetically accessible. For these reasons, much effort has been devoted to developing plant cell lines to produce such compounds. Ideally plant cell culture systems would be amenable to large–scale fermentation and produce high yields within short periods. In fact, after some 15 years worth of effort there are a number of patents that have been issued describing plant tissue culture systems that yield various compounds1; in general, however, such systems have proven less successful than had been hoped. The major reason for this disappointment seems to be that while it is reasonably easy to generate plant tissue cell lines, a great majority of these cell lines do not produce the sought-after secondary metabolites of their parent plants. To circumvent these problems a number of nonclassical plant tissue techniques have been explored that hold great promise. These nonclassical plant tissue culture techniques include (1) the development of specific production media, (2) the use of biotic or abiotic elicitors, and (3) the direct manipulation of the plant genome, often termed transformation, by the various pathogenic soil bacteria in the genus Agrobacterium Since the production of plant drugs by classical tissue culture techniques have been reviewed previously,2,3 we will turn our attention to the use of these nonclassical techniques as metabolite production systems in plant tissue biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Misawa, M., and Suzuki, T. 1982. Research on the production of useful plant metabolites in Japan. Appl. Biochem. and Biotech. 7: 205–216.

    Article  CAS  Google Scholar 

  2. Anderson, L.A., Phillipson, J.D., and Roberts, M.F. 1986. Aspects of alkaloid production by plant cell cultures. in Secondary metabolism in plant cell culture. P. Morris, A.H. Scragg, A. Stafford, and M.W. Fowler, eds. Cambridge: Cambridge University Press.

    Google Scholar 

  3. Yamada, Y. and Hashimoto, T. 1984. Secondary products in tissue culture. In Applications of genetic engineering to crop improvement. G.B. Collins, and J.G. Petolino, eds. Boston: Nijhoff/Junk, Pp. 561–604.

    Chapter  Google Scholar 

  4. Murashige, T. and Skooge, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–481.

    Article  CAS  Google Scholar 

  5. Gamborg, O.L., Miller, R., and Ojima, K. 1958. A medium for the growth of plant tissues. Exp. Cell Res, 50: 151–158.

    Article  Google Scholar 

  6. Knobloch, K.–H., Berlin, J. 1980. Influence of media composition on the formation of secondary metabolites in cell suspension cultures of Catharanthus roseus (L.) G. Don. Z. Naturforsch. 35c: 551–556.

    Google Scholar 

  7. Lindsey, K. 1985. Manipulation, by nutrient limitation, of the biosynthetic activity of immobilized cells of Capsicum frutescens Mill. cv. annum. Planta 165: 126–133.

    Article  CAS  Google Scholar 

  8. De–Eknamkul, W., and Ellis, B.E. 1985. Effects of macronutrients on growth and rosmarinic acid formation in cell suspension cultures of Anchusa officinalis. Plant Cell Rep. 4: 46–49.

    Article  Google Scholar 

  9. Tanahashi, T., and Zenk, M.H. 1990. Elicitor induction and characterization of microsomal protopine–6–hydroxylase, the central enzyme in benzophenanthridine alkaloid biosynthesis. Phytochemistry 29: 1113–1122.

    Article  CAS  Google Scholar 

  10. Vogeli, U., Freeman, J.W., and Chappell, J. 1990. Purification and characterization of an inducible sesquiterpene cyclase in elicitor treated tobacco suspension cultures. Plant Physiol. 93: 182–187.

    Article  CAS  Google Scholar 

  11. Tyler, R.T., Eilert, U., Rijnders, C.O.M., Roewer, I.A., and Kurz, W.G.W. 1988. Semi–continuous production of sanguinarine and dihydrosanguinarine by Papaver somniferum L. cell suspension cultures treated with fungal homogenates. Plant Cell Rep. 7: 410–413.

    CAS  Google Scholar 

  12. Kurz, W.G.W., Constabel, F., Eillert, U., and Tyler, R.T. 1987. In Topics in pharmaceutical sciences, D.D. Breimer and P. Speiser, eds. New York: Elsevier.

    Google Scholar 

  13. Cramer, C.L., Ryder, T.B., Bell, J.N., and Lamb, C.J. 1985. Rapid switching of plant gene expression induced by fungal elicitors. Science 227: 1240–1242.

    Article  CAS  Google Scholar 

  14. Heinstein, P.F. 1985. Future approaches to the formation of secondary natural products in plant cell suspension cultures. J. Nat. Prod.48:1–9.

    Google Scholar 

  15. Cho, G.H., Kim, D.I., Pederson, H., and Chin, C.K. 1988. Etephon enhancement of secondary metabolite synthesis in plant cell cultures. Biotech. Prog. 4: 184–188.

    Article  CAS  Google Scholar 

  16. Mahady, G.B., O’Keefe, B., and Beecher, C.W.W. P. expansum preparation. Unpublished results.

    Google Scholar 

  17. Schumacher, H.–M., Gundlach, H., Fiedler, F. and Zenk, M.H. 1987. Elicitation of benzophenanthridine alkaloid synthesis in Eschscholtzia cell cultures. Plant Cell Rep. 6: 410–413.

    CAS  Google Scholar 

  18. Apostol, I., Heinstein, P.F., and Low, P.S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol. 90: 109–116.

    Article  CAS  Google Scholar 

  19. Zambryski, P., Tempe, J., and Schell, J. 1989. Transfer and function of T–DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201.

    Article  CAS  Google Scholar 

  20. Stachel, S.E., Timmerman, B., and Zambryski, P. 1986. Generation of single stranded T–DNA molecules during the initial stages of T–DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322: 706–712.

    Article  CAS  Google Scholar 

  21. Zambryski, P., Holsters, M., Kruger, K., Depicker, A., Schell, J., Van Montague, M., and Goodman, M. 1980. Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385–1391.

    CAS  Google Scholar 

  22. DeBlock, M., Herrera–Estrella, L., Van Montague, M., Schell, J., and Zambryski, P. 1984. Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3: 1681–1689.

    CAS  Google Scholar 

  23. Caplan, A., Herrera–Estrella, L., Inze’, D., Van Haute, E., Van Montague, M., Schell, J., and Zambryski, P. 1983. Introduction of genetic material into plant cells. Science 222: 815–821.

    Article  CAS  Google Scholar 

  24. O’Keefe, B., Schilling, A.B., and Beecher, C.Wm.W. 1991. Alkaloid production by hormone independent cell lines of Catharanthus roseus (L.)G. Don following transformation with Agrobacterium sp. Poster abstract. Annual Meeting Am. Soc. of Pharmacognosy, Chicago, Illinois.

    Google Scholar 

  25. Anderson, L.A., Keene, A.T., and Phillipson, J.D. 1982. Alkaloid production by leaf organ, root organ and cell suspension cultures of Cinchona ledgeriana. Planta Med. 46: 25–27.

    Article  CAS  Google Scholar 

  26. Staba, J.E., and Chung, A.C. 1981. Quinine and quinidine production by Cinchona leaf, root and unorganized callus. Phytochemistry 20: 2495–2498.

    Article  CAS  Google Scholar 

  27. Winjsma, R. 1986. Ph.D. thesis. Department of Pharmacognosy, University of Leiden, The Netherlands.

    Google Scholar 

  28. Robins, R.J., Payne, J., and Rhodes, M.J.C. 1986. Cell suspension cultures of Cinchona ledgeriana. 1. Growth and quinoline alkaloid production. Planta Med. 52: 220–226.

    Article  Google Scholar 

  29. Rhodes, M.J.C., Payne, J., and Robins, R.J. 1986. Cell suspension cultures of Cinchona ledgeriana. 2. The effect of a range of auxins and cytokinins on the production of quinoline alkaloids. Planta Med. 52: 226–229.

    Article  Google Scholar 

  30. Payne, J., Rhodes, M.J.C., and Robins, R.J. 1987. Quinoline alkaloid production by transformed cultures of Cinchoma ledgeriana. Planta Med. 53: 367–372.

    Article  CAS  Google Scholar 

  31. Hamill, J.D., Robins, R.J., and Rhodes, M.J.C. 1989. Alkaloid production by transformed root cultures of Cinchona ledgeriana. Planta Med. 55: 354–357.

    Article  CAS  Google Scholar 

  32. Flores, H.E., Hoy, M.W., and Pickard, J.J. 1987. Secondary metabolites from root cultures. Trends Biotech. 5: 64–69.

    Article  CAS  Google Scholar 

  33. Zenk, M.H., El–Shagi, H., Arens, H., Stockigt, J., Weiler, E.W., and Deus, B. 1977. Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In Plant tissue culture and its bio–technological application. ed. W. Barz, E. Reinhard, and M.H. Zenk, eds. Berlin: Springer–Verlag. Pp. 27–43.

    Chapter  Google Scholar 

  34. Kreuger, R.J., Carew, D.P., Lui, J.H.C., and Staba, E.J. 1982. Initiation, maintenance and alkaloid content of Catharanthus roseus leaf organ cultures. Planta Med. 45: 56–57.

    Article  Google Scholar 

  35. Knobloch, K.–H., and Berlin, J. 1980. Influence of medium composition on the formation of secondary compounds in cell suspension cultures of Catharanthus roseus (L.) G. Don. Z. Natureforsch. 35c: 551–556.

    Google Scholar 

  36. Lee, S.–L., Cheng, K.–D., and Scott, A.I. 1981. Effects of bioregulators on indole alkaloid biosynthesis in Catharanthus roseus cell culture. Phytochemistry 20: 1841 1843.

    Google Scholar 

  37. Arfmann, H.A., Kohl, W., and Wray, V. 1985. Effect of 5–azacytidine on the formation of secondary metabolites in Catharanthus roseus cell suspension cultures. Z. Natureforsch. 40c: 21–25.

    Google Scholar 

  38. Eilert, U., DeLuca, V., Kurz, W.G.W., and Constabel, F. 1987. Alkaloid formation by habituated and tumorous cell suspension cultures of Catharanthus roseus. Plant Cell Rep. 6: 271–274.

    Article  CAS  Google Scholar 

  39. Parr, A.J., Peerless, A.C.J., Hamill, J.D., Walton, N.J., Robins, R.J., and Rhodes, M.J.C. 1988 Alkaloid production by transformed root cultures of Catharanthus roseus. Plant Cell Rep. 7: 309–312.

    Article  CAS  Google Scholar 

  40. Davioud, E., Kan, C., Hamon, J., Tempe, J., and Husson, H.–P. 1989. Production of indole alkaloids by in vitro root cultures from Catharanthus tricophyllus. Phytochemistry 28: 2675–2680.

    Article  CAS  Google Scholar 

  41. Yamada, Y., and Hashimoto, T. 1982. Production of tropane alkaloids in cultured cells of Hyoscyamus niger. Plant Cell Rep. 1: 101–103.

    Article  CAS  Google Scholar 

  42. Endo, T., and Yamada, Y. 1985. Alkaloid production in cultured roots of three species of Duboisia. Phytochemistry 24: 1233–1236.

    Article  CAS  Google Scholar 

  43. Christen. P., Roberts, M.F., Phillipson, J.D., and Evans, W.C. 1989. High production of tropane alkaloids by “hairy root” cultures of a Datura candida hybrid. Plant Cell Rep. 8: 75–77.

    Article  CAS  Google Scholar 

  44. Payne, J., Hamill, J.D., Robins, R.J., and Rhodes, M.J.C. 1987. Production of hyoscyamine by “hairy root” cultures of Datura stramonium. Planta Med. 53: 474478.

    Google Scholar 

  45. Jaziri, M., Legros, M., Homes, J., and Vanhaelen, M. 1988. Tropine alkaloid production by hairy root cultures of Datura stramonium and Hyoscyamus niger. Phytochemistry 27: 419–420.

    Article  CAS  Google Scholar 

  46. Kamada; H., Okamura, N., Satake, M., Harada, H., and Shimomura, K. 1986. Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep. 5: 239–242.

    Article  CAS  Google Scholar 

  47. Mano, Y., Nabeshima, S., Matsui, C., and Ohkawa, H. 1986. Production of tropane alkaloids by hairy root cultures of Scopalia japonica. Agric, Biol. Chem. 50: 2715 2722.

    Google Scholar 

  48. Wink, M., and Witte, L. 1987. Alkaloids in stem roots of Nicotiana tabacum and Spartium junceum transformed by Agrobacterium rhizogenes. Z. Naturforsch. 42c: 69–72.

    CAS  Google Scholar 

  49. Hamill, J.D., Parr, A.J., Robins, R.J., and Rhodes, M.J.C. 1986. Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agro–bacterium rhizogenes. Plant Cell Rep. 5: 111–114.

    Article  CAS  Google Scholar 

  50. Parr, A.J., and Hamill, J.D. 1987. Relationship between Agrobacterium rhizogenes transformed hairy roots and intact uninfected Nicotiana plants. Phytochemistry 26: 3214–3245.

    Google Scholar 

  51. Saito, K., Murakoshi, I., [nze, D., and VanMontague, M. 1989. Biotransformation of nicotine alkaloids by tobacco shooty teratomas induced by a Ti–plasmid mutant. Plant Cell Rep 7: 607–610.

    CAS  Google Scholar 

  52. Flores, H.E., Hoy, M.W., and Pickard, J.J. 1987. Secondary metabolites from root cultures. Trends Biotech. 5: 64–69.

    Article  CAS  Google Scholar 

  53. Flores, H., Pickard, J. and Signs, M. 1988. Elicitation of polyacetyline production in hairy root cultures of Asteraceae. Suppl. Plant Physiol. 86: 108.

    Google Scholar 

  54. Croes, A.F., van den Berg, A.J.R., Bosveld, M., Breteler, H., and Wullems, G.J. 1989. Thiophene accumulation in relation in relation to morphology in roots of Tagates patula: Effects of auxin and transformation by Agrobacterium. Planta 179: 43–50.

    Article  CAS  Google Scholar 

  55. Yamazaki, T., and Flores, H. 1989. Production of steviol glucosides by hairy root cultures of Stevia. Plant Physiol. 89: 10.

    Article  Google Scholar 

  56. Yoshikawa, T., and Furuya, T. 1987. Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep. 6: 449–453.

    CAS  Google Scholar 

  57. Ushiyama, K., Oda, H., and Miyamoto, Y. 1986. Large scale tissue culture of Panax ginseng root. In Proc. 6th International Congress of Plant Tissue and Cell Culture. D. Somers, B.G. Gregenbach, D.D. Biesboer, W.P. Hackett, and C.E. Green, eds. Minneapolis: University of Minnesota.

    Google Scholar 

  58. Fujita, Y., Hara, Y., Suga, C., and Morimota, T. 1981. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. Plant Cell Rep. 1: 61–63.

    Article  CAS  Google Scholar 

  59. Linsmaier, E.F., and Skoog, F. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18: 100–127.

    Article  CAS  Google Scholar 

  60. Shimomura, K., Satake, M., and Kamada, H. 1986. Production of useful secondary metabolites by hairy roots transformed with Ri–plasmid. In Proc. 6th International Congress of Plant Tissue and Cell Culture. D. Somers, B.G. Gegenbach, D.D. Beisboer, W.P. Hackett, and C.E. Green. Minneapolis: University of Minnesota.

    Google Scholar 

  61. Klee, H., Horsch, R., and Rogers, S. 1987. Agrobacterium–mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38:467486.

    Google Scholar 

  62. Chantal, D., Petit, A., and Tempe, J. 1988. T–DNA length variability in mannopine hairy root: More than 50 kilobasepairs of pRi T–DNA can integrate in plant cells. Plant Cell Rep. 7: 92–95.

    Article  Google Scholar 

  63. Wang, K., Hererra–Estrella, L., Van Montague, M., and Zambryski, P. 1984. Right 25óp terminus sequence of the nopaline T–DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455462.

    Google Scholar 

  64. Barta, A., Sommergruber, K., Thompson, D., Hartmuth, K., Matzke, M.A., and Matzke, A.J.M. 1986. The expression of a nopaline synthase–human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol. Biol. 6: 347–357.

    Article  CAS  Google Scholar 

  65. Haitt, A., Cafferkey, R., and Bowdish, K. 1989. Production of antibodies in transgenic plants. Nature (London) 342: 76–78.

    Article  Google Scholar 

  66. Vanderkerckhove, J., Van Damme, J., Van Lijsebettens, M., Botterman, J., De Block, M., Vandewiele, M., De Clercq, A., Leemans, J., Van Montague, M., and Krebbers, E. 1989. Enkephalins produced in transgenic plants using modified 2S seed storage proteins. BiolTechnology 7: 929–932.

    Article  Google Scholar 

  67. Weising, K., Schell, J., and Kahl, G. 1988. Foreign genes in plants: Transfer, structure, expression and applications. Annu. Rev. Genet. 22: 421–477.

    Article  CAS  Google Scholar 

  68. Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montague, M., and Leemans, J. 1987. Transgenic plants protected from insect attack. Nature (London) 328: 33–37.

    Article  CAS  Google Scholar 

  69. Meyer, P., Heidmann, I., Forkmann, G., and Saedler, H. 1987. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature (London) 330: 677–678.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Keefe, B., Beecher, C.W.W. (1993). The Use of Nonclassical Techniques in the Production of Secondary Metabolites by Plant Tissue Cultures. In: Pezzuto, J.M., Johnson, M.E., Manasse, H.R. (eds) Biotechnology and Pharmacy. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8135-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8135-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-03871-6

  • Online ISBN: 978-94-015-8135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics