Advertisement

The Ethical Ramifications of Biomarker Use for Mood Disorders

  • Shaheen E. LakhanEmail author
  • Karen F. Vieira
Chapter

Abstract

Over the past 20 years, researchers have made considerable progress in the search for diagnostic and prognostic biomarkers of psychiatric disorders, including major depressive disorder, bipolar disorder, and anxiety. Advocates of this research contend that identifying biomarkers will aid in the diagnosis and treatment of these disorders, as well as in the development of more effective psychiatric medications. However, the concept of biomarker testing generates significant ethical concerns, including the testing of non-symptomatic individuals, the potential for health insurance or employment discrimination, and the collection and use of genetic information. Genetic biomarkers are especially controversial since heredity information is uniquely personal – it can reveal an individual’s likely medical future; divulge personal information about one’s parents, siblings and children; and has a history of being used to stigmatize and victimize individuals. Some legal protections are already in place; however, they are far from comprehensive. For example, the US Genetic Information Nondiscrimination Act of 2008 only encompasses tests that analyze DNA, RNA, or chromosomal changes. This means that tests for non-genetic biomarkers, like those based on protein expression or post-translational modifications, are exempt. In the rush toward developing etiological screening tools, it is pertinent to remember that patients are at the heart of the medical profession, not their DNA or protein profile. Any new diagnostic tools should confer a significant benefit to patients without promoting confusion, discrimination, or stigma.

Keywords

Ethics Biomarker Psychiatric disorders Depression Anxiety Genetic Protein Epigenetic Diagnosis Pharmacogenomics 

Abbreviations

5HTT

5-hydroxytryptamine

ABCB1

ATB-binding cassette subfamily B member 1

ACTH

Adrenocorticotropic hormone

BDNF

Brain derived neurotrophic factor

BRCA

Breast cancer gene

CRF

Corticotropin releasing factor

DNA

Deoxyribonucleic acid

DNMT

DNA methyltransferase

DSM-IV

Diagnostic and statistical manual of mental disorders

GABA

γ-aminobutyric acid receptor

GAD-7

Generalized anxiety disorder-7

GINA

Genetic Information Non-discrimination Act

GR

Glucocorticoid receptor

GWA

Genome wide analysis

HIV

Human immunodeficiency virus

HPA

Hypothalamic-pituitary adrenal

MDQ

Mood disorder questionnaire

MDR1

Multidrug resistance 1

MR

Mineralcorticoid receptor

mRNA

Messenger RNA

NEO-PI

NEO personality inventory

NPY

Neuropeptide Y

NR3C1

Nuclear receptor subfamily 3, group C, member 1

PHQ

Patient health questionnaire

PPD

Purified protein derivative

RNA

Ribonucleic acid

SCID

Structured clinical interview for DSM-IV

SNPs

Single nucleotide polymorphisms

SSRIs

Serotonin reuptake inhibitors

TB

Tuberculosis

References

  1. 1.
    Kessler RC, Chiu WT, Demler O et al (2005) Prevalence, severity, and comorbidity of 12-month dsm-iv disorders in the national comorbidity survey replication. Arch Gen Psychiatry 62(6):617–627PubMedCrossRefGoogle Scholar
  2. 2.
    Illes J, Bird SJ (2006) Neuroethics: a modern context for ethics in neuroscience. Trends Neurosci 29(9):511–517PubMedCrossRefGoogle Scholar
  3. 3.
    Cepoiu M, McCusker J, Cole MG et al (2008) Recognition of depression by non-psychiatric physicians – a systematic literature review and meta-analysis. J Gen Intern Med 23(1):25–36PubMedCrossRefGoogle Scholar
  4. 4.
    Hirschfeld RM, Keller MB, Panico S et al (1997) The national depressive and manic-depressive association consensus statement on the undertreatment of depression. J Am Med Assoc 277(4):333–340CrossRefGoogle Scholar
  5. 5.
    Mitchell AJ, Vaze A, Rao S (2009) Clinical diagnosis of depression in primary care: a meta-analysis. Lancet 374(9690):609–619PubMedCrossRefGoogle Scholar
  6. 6.
    Hirschfeld RM, Williams JB, Spitzer RL et al (2000) Development and validation of a screening instrument for bipolar spectrum disorder: the mood disorder questionnaire. Am J Psychiatry 157(11):1873–1875PubMedCrossRefGoogle Scholar
  7. 7.
    Lewis FT, Kass E, Klein RM (2004) An overview of primary care assessment and management of bipolar disorder. J Am Osteopath Assoc 104(Suppl 6):S2–S8PubMedGoogle Scholar
  8. 8.
    Carney CE, Ulmer C, Edinger JD et al (2009) Assessing depression symptoms in those with insomnia: an examination of the beck depression inventory second edition (bdi-ii). J Psychiatr Res 43(5):576–582PubMedCrossRefGoogle Scholar
  9. 9.
    Chaudron LH, Szilagyi PG, Tang W et al (2010) Accuracy of depression screening tools for identifying postpartum depression among urban mothers. Pediatrics 125(3):e609–e617PubMedCrossRefGoogle Scholar
  10. 10.
    Zimmerman M, Galione JN, Ruggero CJ et al (2010) Screening for bipolar disorder and finding borderline personality disorder. J Clin Psychiatry 71(9):1212–1217PubMedCrossRefGoogle Scholar
  11. 11.
    Eack SM, Greeno CG, Lee B-J (2006) Limitations of the patient health questionnaire in identifying anxiety and depression in community mental health: many cases are undetected. Res Soc Work Pract 16(6):625–631CrossRefGoogle Scholar
  12. 12.
    Skodol AE, Rosnick L, Kellman D et al (1988) Validating structured dsm-iii-r personality disorder assessments with longitudinal data. Am J Psychiatry 145(10):1297–1299PubMedGoogle Scholar
  13. 13.
    Ghaemi SN, Sachs GS, Chiou AM et al (1999) Is bipolar disorder still underdiagnosed? Are antidepressants overutilized? J Affect Disord 52(1–3):135–144PubMedCrossRefGoogle Scholar
  14. 14.
    Binder EB, Salyakina D, Lichtner P et al (2004) Polymorphisms in fkbp5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36(12):1319–1325PubMedCrossRefGoogle Scholar
  15. 15.
    Papiol S, Arias B, Gasto C et al (2007) Genetic variability at hpa axis in major depression and clinical response to antidepressant treatment. J Affect Disord 104(1–3):83–90PubMedCrossRefGoogle Scholar
  16. 16.
    Kirchheiner J, Lorch R, Lebedeva E et al (2008) Genetic variants in fkbp5 affecting response to antidepressant drug treatment. Pharmacogenomics 9(7):841–846PubMedCrossRefGoogle Scholar
  17. 17.
    Lavebratt C, Aberg E, Sjoholm LK et al (2010) Variations in fkbp5 and bdnf genes are suggestively associated with depression in a Swedish population-based cohort. J Affect Disord 125(1–3):249–255PubMedCrossRefGoogle Scholar
  18. 18.
    Zobel A, Schuhmacher A, Jessen F et al (2010) DNA sequence variants of the fkbp5 gene are associated with unipolar depression. Int J Neuropsychopharmacol 13(5):649–660PubMedCrossRefGoogle Scholar
  19. 19.
    Xie P, Kranzler HR, Poling J et al (2010) Interaction of fkbp5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology 35(8):1684–1692PubMedGoogle Scholar
  20. 20.
    Hauck S, Gomes F, Silveira Junior Ede M et al (2009) Serum levels of brain-derived neurotrophic factor in acute and posttraumatic stress disorder: a case report study. Rev Bras Psiquiatr 31(1):48–51PubMedCrossRefGoogle Scholar
  21. 21.
    Dell’osso L, Carmassi C, Del Debbio A et al (2009) Brain-derived neurotrophic factor plasma levels in patients suffering from post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 33(5):899–902PubMedCrossRefGoogle Scholar
  22. 22.
    Rasmusson AM, Shi L, Duman R (2002) Downregulation of bdnf mrna in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 27(2):133–142PubMedCrossRefGoogle Scholar
  23. 23.
    Bath KG, Lee FS (2006) Variant bdnf (val66met) impact on brain structure and function. Cogn Affect Behav Neurosci 6(1):79–85PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor WD, Zuchner S, McQuoid DR et al (2007) Allelic differences in the brain-derived neurotrophic factor val66met polymorphism in late-life depression. Am J Geriatr Psychiatry 15(10):850–857PubMedCrossRefGoogle Scholar
  25. 25.
    Lin E, Hong CJ, Hwang JP et al (2009) Gene-gene interactions of the brain-derived neurotrophic-factor and neurotrophic tyrosine kinase receptor 2 genes in geriatric depression. Rejuvenation Res 12(6):387–393PubMedCrossRefGoogle Scholar
  26. 26.
    Sen S, Nesse RM, Stoltenberg SF et al (2003) A bdnf coding variant is associated with the neo personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28(2):397–401PubMedCrossRefGoogle Scholar
  27. 27.
    Chung S, Chung HY, Jung J et al (2010) Association among aggressiveness, neurocognitive function, and the val66met polymorphism of brain-derived neurotrophic factor gene in male schizophrenic patients. Compr Psychiatry 51(4):367–372PubMedCrossRefGoogle Scholar
  28. 28.
    Montag C, Basten U, Stelzel C et al (2010) The bdnf val66met polymorphism and anxiety: support for animal knock-in studies from a genetic association study in humans. Psychiatry Res 179(1):86–90PubMedCrossRefGoogle Scholar
  29. 29.
    Adkins DE, Aberg K, McClay JL et al (2010) A genomewide association study of citalopram response in major depressive disorder-a psychometric approach. Biol Psychiatry 68(6):e25–27PubMedCrossRefGoogle Scholar
  30. 30.
    Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49(5):391–404PubMedCrossRefGoogle Scholar
  31. 31.
    Juruena MF, Cleare AJ, Papadopoulos AS et al (2006) Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacology (Berl) 189(2):225–235CrossRefGoogle Scholar
  32. 32.
    Carvalho LA, Garner BA, Dew T et al (2010) Antidepressants, but not antipsychotics, modulate gr function in human whole blood: An insight into molecular mechanisms. Eur Neuropsychopharmacol 20(6):379–387PubMedCrossRefGoogle Scholar
  33. 33.
    Dong C, Wong ML, Licinio J (2009) Sequence variations of abcb1, slc6a2, slc6a3, slc6a4, creb1, crhr1 and ntrk2: association with major depression and antidepressant response in mexican-americans. Mol Psychiatry 14(12):1105–1118PubMedCrossRefGoogle Scholar
  34. 34.
    Marazziti D, Dell’Osso B, Baroni S et al (2006) Common alterations in the serotonin transporter in platelets and lymphocytes of psychotic patients. Pharmacopsychiatry 39(1):35–38PubMedCrossRefGoogle Scholar
  35. 35.
    Barkan T, Peled A, Modai I et al (2006) Characterization of the serotonin transporter in lymphocytes and platelets of schizophrenia patients treated with atypical or typical antipsychotics compared to healthy individuals. Eur Neuropsychopharmacol 16(6):429–436PubMedCrossRefGoogle Scholar
  36. 36.
    Barkan T, Peled A, Modai I et al (2006) Serotonin transporter characteristics in lymphocytes and platelets of male aggressive schizophrenia patients compared to non-aggressive schizophrenia patients. Eur Neuropsychopharmacol 16(8):572–579PubMedCrossRefGoogle Scholar
  37. 37.
    Mata S, Urbina M, Manzano E et al (2005) Noradrenaline transporter and its turnover rate are decreased in blood lymphocytes of patients with major depression. J Neuroimmunol 170(1–2):134–140PubMedCrossRefGoogle Scholar
  38. 38.
    Hood L, Heath JR, Phelps ME et al (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643PubMedCrossRefGoogle Scholar
  39. 39.
    Paige LA, Mitchell MW, Krishnan KR et al (2007) A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry 22(5):418–423PubMedCrossRefGoogle Scholar
  40. 40.
    Andersen AE, McHugh PR (1971) Oat cell carcinoma with hypercortisolemia presenting to a psychiatric hospital as a suicide attempt. J Nerv Ment Dis 152(6):427–431PubMedCrossRefGoogle Scholar
  41. 41.
    Claustrat B, Chazot G, Brun J et al (1984) A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol Psychiatry 19(8):1215–1228PubMedGoogle Scholar
  42. 42.
    Joyce PR, Mulder RT, Cloninger CR (1994) Temperament and hypercortisolemia in depression. Am J Psychiatry 151(2):195–198PubMedGoogle Scholar
  43. 43.
    Carroll BJ, Cassidy F, Naftolowitz D et al (2007) Pathophysiology of hypercortisolism in depression. Acta Psychiatr Scand Suppl 433:90–103PubMedCrossRefGoogle Scholar
  44. 44.
    Duval F, Mokrani MC, Monreal-Ortiz JA et al (2006) Cortisol hypersecretion in unipolar major depression with melancholic and psychotic features: dopaminergic, noradrenergic and thyroid correlates. Psychoneuroendocrinology 31(7):876–888PubMedCrossRefGoogle Scholar
  45. 45.
    Romer B, Lewicka S, Kopf D et al (2009) Cortisol metabolism in depressed patients and healthy controls. Neuroendocrinology 90(3):301–306PubMedCrossRefGoogle Scholar
  46. 46.
    Thakore JH, Dinan TG (1995) Cortisol synthesis inhibition: a new treatment strategy for the clinical and endocrine manifestations of depression. Biol Psychiatry 37(6):364–368PubMedCrossRefGoogle Scholar
  47. 47.
    Wilder J (1947) Cholesterol metabolism in melancholic and reactive depressions. Am J Psychother 1(4):495–499PubMedGoogle Scholar
  48. 48.
    Whittier JR, Korenyi C, Goldschmidt L et al (1964) The serum cholesterol “Sign” test in depression. Psychosomatics 5:27–33PubMedGoogle Scholar
  49. 49.
    Bauer LK, Huffman JC (2010) Is low cholesterol associated with depression in cardiac patients?. Int J Cardiol 145(3):537–539. [serial online] May 17. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0167-5273(10)00301-3. Accessed 3 Aug 2010Google Scholar
  50. 50.
    Lehto SM, Niskanen L, Tolmunen T et al (2010) Low serum hdl-cholesterol levels are associated with long symptom duration in patients with major depressive disorder. Psychiatry Clin Neurosci 64(3):279–283PubMedCrossRefGoogle Scholar
  51. 51.
    Dinan TG (2009) Inflammatory markers in depression. Curr Opin Psychiatry 22(1):32–36PubMedCrossRefGoogle Scholar
  52. 52.
    Paez-Pereda M, Panhuysen M (2009) Strategies to identifying biomarkers for depression. In: Turk CW (ed) Biomarkers for psychiatric disorders. Springer, New York, NY, pp 299–314Google Scholar
  53. 53.
    Kim YK, Lee SW, Kim SH et al (2008) Differences in cytokines between non-suicidal patients and suicidal patients in major depression. Prog Neuropsychopharmacol Biol Psychiatry 32(2):356–361PubMedCrossRefGoogle Scholar
  54. 54.
    Tonelli LH, Stiller J, Rujescu D et al (2008) Elevated cytokine expression in the orbitofrontal cortex of victims of suicide. Acta Psychiatr Scand 117(3):198–206PubMedCrossRefGoogle Scholar
  55. 55.
    Renthal W, Maze I, Krishnan V et al (2007) Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56(3):517–529PubMedCrossRefGoogle Scholar
  56. 56.
    Tsankova NM, Berton O, Renthal W et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525PubMedCrossRefGoogle Scholar
  57. 57.
    Olsson CA, Foley DL, Parkinson-Bates M et al (2010) Prospects for epigenetic research within cohort studies of psychological disorder: a pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biol Psychol 83(2):159–165PubMedCrossRefGoogle Scholar
  58. 58.
    Poulter MO, Du L, Weaver IC et al (2008) Gabaa receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol Psychiatry 64(8):645–652PubMedCrossRefGoogle Scholar
  59. 59.
    Alexopoulos GS, Kiosses DN, Choi SJ et al (2002) Frontal white matter microstructure and treatment response of late-life depression: a preliminary study. Am J Psychiatry 159(11):1929–1932PubMedCrossRefGoogle Scholar
  60. 60.
    Alexopoulos GS, Murphy CF, Gunning-Dixon FM et al (2008) Microstructural white matter abnormalities and remission of geriatric depression. Am J Psychiatry 165(2):238–244PubMedCrossRefGoogle Scholar
  61. 61.
    Taylor WD, MacFall JR, Payne ME et al (2004) Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter. Am J Psychiatry 161(7):1293–1296PubMedCrossRefGoogle Scholar
  62. 62.
    Bae JN, MacFall JR, Krishnan KR et al (2006) Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol Psychiatry 60(12):1356–1363PubMedCrossRefGoogle Scholar
  63. 63.
    Pavuluri MN, Herbener ES, Sweeney JA (2005) Affect regulation: a systems neuroscience perspective. Neuropsychiatr Dis Treat 1(1):9–15PubMedCrossRefGoogle Scholar
  64. 64.
    Brunoni AR, Teng CT, Correa C et al (2010) Neuromodulation approaches for the treatment of major depression: challenges and recommendations from a working group meeting. Arq Neuropsiquiatr 68(3):433–451Google Scholar
  65. 65.
    Steiger A, Kimura M (2010) Wake and sleep EEG provide biomarkers in depression. J Psychiatr Res 44(4):242–252PubMedCrossRefGoogle Scholar
  66. 66.
    Veen G, van Vliet IM, DeRijk RH et al (2010) Basal cortisol levels in relation to dimensions and DSM-IV categories of depression and anxiety. Psychiatry Res 185(1–2):121–128. [serial online] May 26. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0165-1781(09)00276-5. Accessed 3 Aug 2010Google Scholar
  67. 67.
    Muller MB, Holsboer F (2006) Mice with mutations in the hpa-system as models for symptoms of depression. Biol Psychiatry 59(12):1104–1115PubMedCrossRefGoogle Scholar
  68. 68.
    Tasan RO, Nguyen NK, Weger S et al (2010) The central and basolateral amygdala are critical sites of neuropeptide y/y2 receptor-mediated regulation of anxiety and depression. J Neurosci 30(18):6282–6290PubMedCrossRefGoogle Scholar
  69. 69.
    Amstadter AB, Koenen KC, Ruggiero KJ et al (2010) Npy moderates the relation between hurricane exposure and generalized anxiety disorder in an epidemiologic sample of hurricane-exposed adults. Depress Anxiety 27(3):270–275PubMedCrossRefGoogle Scholar
  70. 70.
    Domschke K, Dannlowski U, Hohoff C et al (2010) Neuropeptide y (npy) gene: impact on emotional processing and treatment response in anxious depression. Eur Neuropsychopharmacol 20(5):301–309PubMedCrossRefGoogle Scholar
  71. 71.
    Mrazek DA (2010) Psychiatric pharmacogenomic testing in clinical practice. Dialogues Clin Neurosci 12(1):69–76PubMedGoogle Scholar
  72. 72.
    Hoop JG, Lapid MI, Paulson RM et al (2010) Clinical and ethical considerations in pharmacogenetic testing: views of physicians in 3 “Early adopting” Departments of psychiatry. J Clin Psychiatry 71(6):745–753PubMedCrossRefGoogle Scholar
  73. 73.
    Agard A, Bolmsjo IA, Hermeren G et al (2005) Familial hypercholesterolemia: ethical, practical and psychological problems from the perspective of patients. Patient Educ Couns 57(2):162–167PubMedCrossRefGoogle Scholar
  74. 74.
    Andersen LK, Jensen HK, Juul S et al (1997) Patients’ attitudes toward detection of heterozygous familial hypercholesterolemia. Arch Intern Med 157(5):553–560PubMedCrossRefGoogle Scholar
  75. 75.
    Clifton JM, VanBeuge SS, Mladenka C et al (2010) The genetic information nondiscrimination act 2008: what clinicians should understand. J Am Acad Nurse Pract 22(5):246–249PubMedCrossRefGoogle Scholar
  76. 76.
    Appelbaum PS (2010) Law & psychiatry: genetic discrimination in mental disorders: the impact of the genetic information nondiscrimination act. Psychiatr Serv 61(4):338–340PubMedCrossRefGoogle Scholar
  77. 77.
    West EL, Gadkowski LB, Ostbye T et al (2008) Tuberculosis knowledge, attitudes, and beliefs among north carolinians at increased risk of infection. N C Med J 69(1):14–20PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Global Neuroscience Initiative Foundation (GNIF)Los AngelesUSA

Personalised recommendations