Advertisement

Automated 3D Skeleton Winding Process for Continuous-Fiber-Reinforcements in Structural Thermoplastic Components

  • Björn BeckEmail author
  • H. Tawfik
  • J. Haas
  • Y.-B. Park
  • F. Henning
Conference paper
  • 35 Downloads

Abstract

Continuous fiber reinforcements can significantly improve the mechanical properties of thermoplastic injection-molded components compared to short and long fiber reinforcements. By aligning the continuous fibers in the main load paths, the reinforcement can be optimally exploited. The 3D skeleton winding process (3DSW) is a robot-based filament winding technique in which defined load application points are connected with wound closed loop structures. The introduction of thermoplastic commingled yarns in the winding process allows an efficient fiber impregnation to produce fiber skeletons that can be overmolded in an injection molding process to locally reinforce the final component. The combination of a robot-based winding process and injection molding as a process for large-scale production enables the use of thermoplastic materials for complex structural applications in higher quantities.

This paper presents the 3DSW manufacturing process and introduces a simple loop and a generic 3D test specimen. Fundamental investigations into these structural components with overmolded fiber skeletons demonstrate the potential of continuous fibers in injection molded components made from PP and PPS.

Keywords

Robot-based winding 3DSW Commingled yarns Polyphenylene sulfide 

Notes

Acknowledgments

This research was supported by the Core Industrial Technology Development Program (Grant No. 10052896) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea through Korea Evaluation Institute of Industrial Technology (KEIT).

References

  1. 1.
    Ehrenstein, G.W.: Faserverbund-Kunststoffe – Werkstoffe – Verarbeitung – Eigenschaften. Hanser, München (2006)CrossRefGoogle Scholar
  2. 2.
    Witten, E. (Eds.): Handbuch Faserverbundkunststoffe/Composites – Grundlagen, Verarbeitung, Anwendungen. AVK, Industrievereinigung Verstärkte Kunststoffe. Springer Vieweg, Wiesbaden (2014)Google Scholar
  3. 3.
    Flemming, M., Roth, S.: Faserverbundbauweisen Eigenschaften – Mechanische, konstruktive, thermische, elektrische, ökologische, wirtschaftliche Aspekte. Springer, Berlin (2003)Google Scholar
  4. 4.
    Verfahren und Vorrichtung zur Herstellung eines mit Endlosfasern verstärkten Polymer-Formteils. Erfinder: Krause, W., Reif, M., Walch, M. und Henning, F. Anmeldung: 24. November 2004, EP 1 568 473 B1Google Scholar
  5. 5.
    Huber, T.: Einfluss lokaler Endlosfaserverstärkungen auf das Eigenschaftsprofil struktureller Spritzgießbauteile, Wissenschaftliche Schriftenreihe des Fraunhofer ICTBd. 60. Fraunhofer, Stuttgart (2014)Google Scholar
  6. 6.
    Minsch, N., Herrmann, F.H., Gereke, T., et al.: Analysis of filament winding processes and potential equipment technologies. Procedia CIRP 66, 125–130 (2017)CrossRefGoogle Scholar
  7. 7.
    Heinzle, V., Huber, T., Henning, F., et al.: Process development of injection molded parts with wound fiber structures for local reinforcement. In: AIP Conference Proceedings. American Institute of Physics, Nuremberg, Germany, pp. 736–740 (2014)Google Scholar
  8. 8.
    Eyerer, P., Elsner, P., Hirth, T.: Polymer Engineering – Technologien und Praxis. VDI-Buch, Springer, Berlin (2008)Google Scholar
  9. 9.
    DIN EN ISO 527-1: Kunststoffe – Bestimmung der Zugeigenschaften – Teil 1 Allgemeine GrundsätzeGoogle Scholar
  10. 10.
    Braskem Europe GmbH: Polyolefins – product and properties Ausgabe September (2013)Google Scholar
  11. 11.
    Lyondellbasell: Technical Data Sheet – Hostacom HRG 328T NAT Ausgabe Juli (2018)Google Scholar
  12. 12.
    Bonnet, M.: Kunststoffe in der Ingenieuranwendung – Verstehen und zuverlässig auswählen. Vieweg+Teubner Verlag, GWV Fachverlage GmbH Wiesbaden, Wiesbaden (2009)Google Scholar
  13. 13.
    DSM: Technical Data Sheet – Xytron U3020E Ausgabe September (2017)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Björn Beck
    • 1
    Email author
  • H. Tawfik
    • 1
  • J. Haas
    • 1
  • Y.-B. Park
    • 2
  • F. Henning
    • 1
    • 3
  1. 1.Fraunhofer Institute for Chemical Technology ICTPfinztalGermany
  2. 2.Ulsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
  3. 3.Karlsruhe Institute of Technology, Institute for Vehicle System TechnologyKarlsruheGermany

Personalised recommendations