Skip to main content

In Situ X-Ray Reciprocal Space Mapping for Characterization of Nanomaterials

  • Chapter
  • First Online:
X-ray and Neutron Techniques for Nanomaterials Characterization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glatter O, Kratky O (1982) Small angle x-ray scattering. Academic, London/New York

    Google Scholar 

  2. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York

    Google Scholar 

  3. Feigin LA, Svergun DI, Taylor GW (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York

    Book  Google Scholar 

  4. Brumberger H (1995) Modern aspects of small-angle scattering. Kluwer Academic Publishers, Dordrecht/Boston

    Book  Google Scholar 

  5. Renaud G, Lazzari R, Revenant C, Barbier A et al (2003) Real-time monitoring of growing nanoparticles. Science 300:1416

    Article  Google Scholar 

  6. Als-Nielsen J, MacMorrow D (2011) Elements of modern X-ray physics. Wiley, Chichester

    Book  Google Scholar 

  7. Yoneda Y (1963) Anomalous surface reflection of X rays. Phys Rev 131:2010

    Article  Google Scholar 

  8. Holý V, Pietsch U, Baumbach T (1999) High-resolution X-ray scattering from thin films and multilayers. Springer, Berlin/New York

    Google Scholar 

  9. Holy V, Baumbach T (1994) Nonspecular X-ray reflection from rough multilayers. Phys Rev B 49:10668

    Article  Google Scholar 

  10. Holy V, Kubena J, Ohlidal I, Lischka K et al (1993) X-ray reflection from rough layered systems. Phys Rev B 47:15896

    Article  Google Scholar 

  11. Renaud G, Lazzari R, Leroy F (2009) Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf Sci Rep 64:255

    Article  Google Scholar 

  12. Lazzari R (2002) IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands. J Appl Crystallogr 35:406

    Article  Google Scholar 

  13. Birkholz M, Fewster PF, Genzel C (2006) Thin film analysis by X-ray scattering. Wiley-VCH, Weinheim

    Google Scholar 

  14. http://www.bornagainproject.org/

  15. http://www.pprime.fr/?q=fr/nanoparticules-nanostructures

  16. Tate MP, Urade VN, Kowalski JD, Wei T-c et al (2006) Simulation and interpretation of 2D diffraction patterns from self-assembled nanostructured films at arbitrary angles of incidence: from grazing incidence (above the critical angle) to transmission perpendicular to the substrate. J Phys Chem B 110:9882

    Article  Google Scholar 

  17. Chourou ST, Sarje A, Li XS, Chan ER et al (2013) HipGISAXS: a high-performance computing code for simulating grazing-incidence X-ray scattering data. J Appl Crystallogr 46:1781

    Article  Google Scholar 

  18. Daillant J, Gibaud A (2009) X-ray and neutron reflectivity: principles and applications. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  19. Bennett JM, Mattsson L (1989) Introduction to surface roughness and scattering. Optical Society of America, Washington, DC

    Google Scholar 

  20. Pelliccione M, Lu TM (2008) Evolution of thin film morphology: modeling and simulations. Springer, New York/London

    Google Scholar 

  21. Franceschetti G, Riccio D (2007) Scattering, natural surfaces, and fractals. Elsevier Academic Press, Amsterdam/Boston

    Google Scholar 

  22. Onuki H, Elleaume P (2003) Undulators, wigglers, and their applications. Taylor & Francis, London/New York

    Book  Google Scholar 

  23. Liu D-G, Chang C-H, Liu C-Y, Chang S-H et al (2009) A dedicated small-angle X-ray scattering beamline with a superconducting wiggler source at the NSRRC. J Synchrotron Radiat 16:97

    Article  Google Scholar 

  24. Döhrmann R, Botta S, Buffet A, Santoro G et al (2013) A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation. Amsterdam 84:043901

    Google Scholar 

  25. Santoro G, Buffet A, Döhrmann R, Yu S et al (2014) Use of intermediate focus for grazing incidence small and wide angle x-ray scattering experiments at the beamline P03 of PETRA III, DESY. Rev Sci Instrum 85:043901

    Article  Google Scholar 

  26. Borsali R, Pecora R (2008) Soft-matter characterization. Springer, New York

    Book  Google Scholar 

  27. Zschornack G (2006) Handbook of X-ray data. Springer, New York

    Google Scholar 

  28. Otendal M, Tuohimaa T, Vogt U, Hertz HM (2008) A 9 keV electron-impact liquid-gallium-jet x-ray source. Rev Sci Instrum 79:016102

    Article  Google Scholar 

  29. Siffalovic P, Vegso K, Jergel M, Majkova E et al (2010) Measurement of nanopatterned surfaces by real and reciprocal space techniques. Meas Sci Rev 10:153

    Article  Google Scholar 

  30. Michaelsen C, Wiesmann J, Hoffmann C, Wulf K et al (2002) Recent developments of multilayer mirror optics for laboratory x-ray instrumentation. X-Ray Mirrors, Crystals, and Multilayers Ii 4782:143

    Article  Google Scholar 

  31. Wiesmann J, Graf J, Hoffmann C, Hembd A et al (2009) X-ray diffractometry with low power microfocus sources – new possibilities in the lab. Part Part Syst Charact 26:112

    Article  Google Scholar 

  32. Michaelsen C, Wiesmann J, Hoffmann C, Oehr A et al (2003) Optimized performance of graded multilayer optics for X-ray single crystal diffraction. Advances in Mirror Technology for X-Ray, Euv Lithography, Laser, and Other Applications 5193:211

    Article  Google Scholar 

  33. Hertlein F, Oehr A, Hoffmann C, Michaelsen C et al (2006) State-of-the-art of multilayer optics for laboratory X-ray devices. Part Part Syst Charact 22:378

    Article  Google Scholar 

  34. Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 83:1483

    Article  Google Scholar 

  35. Hemberg O, Otendal M, Hertz HM (2004) Liquid-metal-jet anode X-ray tube. Opt Eng 43:1682

    Article  Google Scholar 

  36. De Caro L, Altamura D, Vittoria FA, Carbone G et al (2012) A superbright X-ray laboratory microsource empowered by a novel restoration algorithm. J Appl Crystallogr 45:1228

    Article  Google Scholar 

  37. De Caro L, Altamura D, Sibillano T, Siliqi D et al (2013) Rat-tail tendon fiber SAXS high-order diffraction peaks recovered by a superbright laboratory source and a novel restoration algorithm. J Appl Crystallogr 46:672

    Article  Google Scholar 

  38. He BB (2009) Two-dimensional x-ray diffraction. Wiley, Hoboken

    Book  Google Scholar 

  39. Wignall GD, Lin JS, Spooner S (1990) Reduction of parasitic scattering in small-angle X-ray scattering by a three-pinhole collimating system. J Appl Crystallogr 23:241

    Article  Google Scholar 

  40. Li Y, Beck R, Huang T, Choi MC et al (2008) Scatterless hybrid metal-single-crystal slit for small-angle X-ray scattering and high-resolution X-ray diffraction. J Appl Crystallogr 41:1134

    Article  Google Scholar 

  41. Korytar D, Vagovic P, Vegso K, Siffalovic P et al (2013) Potential use of V-channel Ge(220) monochromators in X-ray metrology and imaging. J Appl Crystallogr 46:945

    Article  Google Scholar 

  42. Jergel M, Siffalovic P, Vegso K, Majkova E et al (2013) Extreme X-ray beam compression for a high-resolution table-top grazing-incidence small-angle X-ray scattering setup. J Appl Crystallogr 46:1544

    Article  Google Scholar 

  43. Schlepütz CM, Herger R, Willmott PR, Patterson BD et al (2005) Improved data acquisition in grazing-incidence X-ray scattering experiments using a pixel detector. Acta Crystallogr Sect A Found Crystallogr 61:418

    Article  Google Scholar 

  44. Kraft P, Bergamaschi A, Broennimann C, Dinapoli R et al (2009) Performance of single-photon-counting PILATUS detector modules. J Synchrotron Radiat 16:368

    Article  Google Scholar 

  45. Wernecke J, Gollwitzer C, Muller P, Krumrey M (2014) Characterization of an in-vacuum PILATUS 1M detector. J Synchrotron Radiat 21:529

    Article  Google Scholar 

  46. Chitu L, Siffalovic P, Majkova E, Jergel M et al (2010) Modified Langmuir-Blodgett deposition of nanoparticles – measurement of 2D to 3D ordered arrays. Meas Sci Rev 10:162

    Article  Google Scholar 

  47. Siffalovic P, Majkova E, Jergel M, Vegso K et al (2012) Self-assembly of nanoparticles at solid and liquid surfaces. In: Hashim A (ed) Smart nanoparticles technology. INTECH, Rijeka, pp 441–466

    Google Scholar 

  48. Sun SH, Murray CB, Weller D, Folks L et al (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989

    Article  Google Scholar 

  49. Bigioni TP, Lin XM, Nguyen TT, Corwin EI et al (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265

    Article  Google Scholar 

  50. Shevchenko EV, Talapin DV, Kotov NA, O'Brien S et al (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55

    Article  Google Scholar 

  51. Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye X et al (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461:964

    Article  Google Scholar 

  52. Fan JA, Wu C, Bao K, Bao J et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135

    Article  Google Scholar 

  53. Macfarlane RJ, Lee B, Jones MR, Harris N et al (2011) Nanoparticle superlattice engineering with DNA. Science 334:204

    Article  Google Scholar 

  54. Luby S, Chitu L, Jergel M, Majkova E et al (2012) Oxide nanoparticle arrays for sensors of CO and NO2 gases. Vacuum 86:590

    Article  Google Scholar 

  55. Herrmann J, Müller KH, Reda T, Baxter GR et al (2007) Nanoparticle films as sensitive strain gauges. Appl Phys Lett 91:183105

    Article  Google Scholar 

  56. Siffalovic P, Chitu L, Vegso K, Majkova E et al (2010) Towards strain gauges based on a self-assembled nanoparticle monolayer-SAXS study. Nanotechnology 21:385702

    Article  Google Scholar 

  57. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102

    Article  Google Scholar 

  58. Santoro G, Yu S, Schwartzkopf M, Zhang P et al (2014) Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement. Appl Phys Lett 104:243107

    Article  Google Scholar 

  59. Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49

    Article  Google Scholar 

  60. Siffalovic P, Majkova E, Chitu L, Jergel M et al (2007) Self-assembly of iron oxide nanoparticles studied by time-resolved grazing-incidence small-angle x-ray scattering. Phys Rev B 76:195432

    Article  Google Scholar 

  61. Siffalovic P, Majkova E, Chitu L, Jergel M et al (2008) Real-time tracking of superparamagnetic nanoparticle self-assembly. Small 4:2222

    Article  Google Scholar 

  62. Vegso K, Siffalovic P, Majkova E, Jergel M et al (2012) Nonequilibrium phases of nanoparticle Langmuir films. Langmuir 28:10409

    Article  Google Scholar 

  63. Vegso K, Siffalovic P, Benkovicova M, Jergel M et al (2012) GISAXS analysis of 3D nanoparticle assemblies-effect of vertical nanoparticle ordering. Nanotechnology 23:045704

    Article  Google Scholar 

  64. Vegso K, Siffalovic P, Jergel M, Weis M et al (2014) A non-equilibrium transient phase revealed by in situ GISAXS tracking of the solvent-assisted nanoparticle self-assembly. J Nanopart Res 16:2536

    Article  Google Scholar 

  65. Eads JL, Millane RP (2001) Diffraction by the ideal paracrystal. Acta Crystallogr A 57:507

    Article  Google Scholar 

  66. Capone S, Manera MG, Taurino A, Siciliano P et al (2014) Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir–Blodgett technique for gas sensors application. Langmuir 30:1190

    Article  Google Scholar 

  67. Siffalovic P, Vegso K, Benkovicova M, Jergel M et al (2014) Reassembly and oxidation of a silver nanoparticle bilayer probed by in situ X-ray reciprocal space mapping. J Phys Chem C 118:7195

    Article  Google Scholar 

  68. Hirota E, Sakakima H, Inomata K (eds) (2002) Giant magneto-resistance devices. Springer, Berlin/Heidelberg

    Google Scholar 

  69. Spiller E (1994) Soft X-ray optics. SPIE Optical Engineering Press, Bellingham

    Book  Google Scholar 

  70. Venables J (2000) Introduction to surface and thin film processes. Cambridge University Press, Cambridge; New York

    Book  Google Scholar 

  71. Lüth H (2010) Solid surfaces, interfaces and thin films. Springer, Heidelberg/New York

    Book  Google Scholar 

  72. Freund LB, Suresh S (2009) Thin film materials: stress, defect formation, and surface evolution. Cambridge University Press, Cambridge/New York

    Google Scholar 

  73. Ohring M (2001) Materials science of thin films. Elsevier Science, Singapore

    Google Scholar 

  74. Barabási A-L, Stanley HE (1995) Fractal concepts in surface growth. Press Syndicate of the University of Cambridge, New York

    Book  Google Scholar 

  75. Renaud G, Ducruet M, Ulrich O, Lazzari R (2004) Apparatus for real time in situ quantitative studies of growing nanoparticles by grazing incidence small angle X-ray scattering and surface differential reflectance spectroscopy. Nucl Inst Methods Phys Res B 222:667

    Article  Google Scholar 

  76. Hodas M 2015 doi:10.1117/12.2187999

  77. Schwartzkopf M, Buffet A, Korstgens V, Metwalli E et al (2013) From atoms to layers: in situ gold cluster growth kinetics during sputter deposition. Nanoscale 5:5053

    Article  Google Scholar 

  78. Siffalovic P, Jergel M, Majkova E (2011) GISAXS – probe of buried interfaces in multilayered thin films. In: Bauwens CM (ed) X-ray scattering. Nova Science Publishers, New York, pp 1–54

    Google Scholar 

  79. Stearns DG (1992) X-ray-scattering from interfacial roughness in multilayer structures. J Appl Phys 71:4286

    Article  Google Scholar 

  80. Salditt T, Lott D, Metzger TH, Peisl J et al (1996) Observation of the Huygens-principle growth mechanism in sputtered W/Si multilayers. Europhys Lett 36:565

    Article  Google Scholar 

  81. Salditt T, Metzger TH, Peisl J, Reinker B et al (1995) Determination of the height-height correlation-function of rough surfaces from diffuse-X-ray scattering. Europhys Lett 32:331

    Article  Google Scholar 

  82. Salditt T, Lott D, Metzger TH, Peisl J et al (1996) Characterization of interface roughness in W/Si multilayers by high resolution diffuse X-ray scattering. Phys B Condens Matter 221:13

    Article  Google Scholar 

  83. Salditt T, Metzger TH, Brandt C, Klemradt U et al (1995) Determination of the static scaling exponent of self-affine interfaces by nonspecular X-ray-scattering. Phys Rev B 51:5617

    Article  Google Scholar 

  84. Salditt T, Metzger TH, Peisl J (1994) Kinetic roughness of amorphous multilayers studied by diffuse-X-ray scattering. Phys Rev Lett 73:2228

    Article  Google Scholar 

  85. Siffalovic P, Majkova E, Chitu L, Jergel M et al (2009) Characterization of Mo/Si soft X-ray multilayer mirrors by grazing-incidence small-angle X-ray scattering. Vacuum 84:19

    Article  Google Scholar 

  86. Sinha SK, Sirota EB, Garoff S, Stanley HB (1988) X-ray and neutron-scattering from rough surfaces. Phys Rev B 38:2297

    Article  Google Scholar 

  87. Edwards SF, Wilkinson DR (1982) The surface statistics of a granular aggregate. Proc R Soc A 381:17

    Article  Google Scholar 

  88. Siffalovic P, Jergel M, Chitu L, Majkova E et al (2010) Interface study of a high-performance W/B4C X-ray mirror. J Appl Crystallogr 43:1431

    Article  Google Scholar 

  89. Wu W-R, Jeng US, Su C-J, Wei K-H et al (2011) Competition between fullerene aggregation and poly(3-hexylthiophene) crystallization upon annealing of bulk heterojunction solar cells. ACS Nano 5:6233

    Article  Google Scholar 

  90. Li G, Yao Y, Yang H, Shrotriya V et al (2007) “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17:1636

    Article  Google Scholar 

  91. Ziberi B, Cornejo M, Frost F, Rauschenbach B (2009) Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering. J Phys Condens Matter 21:224003

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Slovak Research and Development Agency, project no. APVV-0308-11; Grant Agency VEGA Bratislava, project no. 2/0004/15; and Centre of Excellence SAS FUNMAT. The support of the M-ERA-Net project XOPTICS and COST Actions MP1203 and MP1207 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Siffalovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siffalovic, P. et al. (2016). In Situ X-Ray Reciprocal Space Mapping for Characterization of Nanomaterials. In: Kumar, C. (eds) X-ray and Neutron Techniques for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48606-1_9

Download citation

Publish with us

Policies and ethics