Skip to main content
Log in

A non-equilibrium transient phase revealed by in situ GISAXS tracking of the solvent-assisted nanoparticle self-assembly

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report on a time-resolved study of the colloidal nanoparticle self-assembly into a high-quality nanoparticle crystal with the face-centered cubic crystallographic symmetry. In particular, the grazing-incidence small-angle X-ray scattering technique was employed to track kinetics of the solvent evaporation driven self-assembly on casting a drop of plasmonic Ag nanoparticles on a silicon substrate. The short-range (cumulative) disorder typical for paracrystal structures before the complete solvent evaporation at 300–350 s from the drop casting was found with the exception of the time window of 125–150 s where a highly regular transient phase with the long-range order was observed. This temporary improvement of the nanoparticle crystal perfection occurring shortly before the complete solvent evaporation is the main message of the paper. It is attributed to interaction between the surfactant shells of the neighboring nanoparticles getting into contact in the presence of solvent residua to the end of the solvent evaporation which results in a larger nanoparticle hydrodynamic diameter with a smaller dispersion and improvement of the crystallization. This process has direct impact on the quality of the resulting nanoparticle crystal and tailoring its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altamura D, Holý V, Siliqi D, Lekshmi IC, Nobile C, Maruccio G, Cozzoli PD, Fan L, Gozzo F, Giannini C (2012) Exploiting GISAXS for the study of a 3D ordered superlattice of self-assembled colloidal iron oxide nanocrystals. Cryst Growth Des 12(11):5505–5512

    Article  Google Scholar 

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Google Scholar 

  • Buffet A, Rothkirch A, Dohrmann R, Korstgens V, Kashem MMA, Perlich J, Herzog G, Schwartzkopf M, Gehrke R, Muller-Buschbaum P, Roth SV (2012) P03, the microfocus and nanofocus X-ray scattering (MiNaXS) beamline of the PETRA III storage ring: the microfocus endstation. J Synchrotron Radiat 19:647–653

    Article  Google Scholar 

  • Chitu L, Siffalovic P, Majkova E, Jergel M, Vegso K, Luby S, Capek I, Satka A, Perlich J, Timmann A, Roth SV, Keckes J, Maier GA (2010) Modified Langmuir–Blodgett deposition of nanoparticles: measurement of 2D to 3D ordered arrays. Meas Sci Rev 10(5):162–165

    Article  Google Scholar 

  • Dai Y, Lin B, Meron M, Kim K, Leahy B, Witten TA, Shpyrko OG (2013) Synchrotron X-ray studies of rapidly evolving morphology of self-assembled nanoparticle films under lateral compression. Langmuir 29(46):14050–14056

    Article  Google Scholar 

  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829

    Article  Google Scholar 

  • Dunphy D, Fan H, Li X, Wang J, Brinker CJ (2008) Dynamic investigation of gold nanocrystal assembly using in situ grazing-incidence small-angle X-ray scattering. Langmuir 24(19):10575–10578

    Article  Google Scholar 

  • Eads JL, Millane RP (2001) Diffraction by the ideal paracrystal. Acta Crystallogr A 57:507–517

    Article  Google Scholar 

  • Elbaz J, Cecconello A, Fan Z, Govorov AO, Willner I (2013) Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines. Nat Commun 4:2000

    Google Scholar 

  • Hindeleh AM, Hosemann R (1988) Paracrystals representing the physical state of matter. J Phys C 21(23):4155–4170

    Article  Google Scholar 

  • Lin ZQ (2012) Evaporative self-assembly of ordered complex structures. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  • Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217

    Google Scholar 

  • Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA (2011) Nanoparticle superlattice engineering with DNA. Science 334(6053):204–208

    Article  Google Scholar 

  • Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232

    Google Scholar 

  • Martin MN, Basham JI, Chando P, Eah SK (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26(10):7410–7417

    Article  Google Scholar 

  • Moscatelli A (2012) Gold nanoparticles afloat. Nat Mater 11(1):8

    Google Scholar 

  • Pohjalainen E, Pohjakallio M, Johans C, Kontturi KS, Timonen JVI, Ikkala O, Ras RHA, Viitala T, Heino MT, Seppälä ET (2010) Cobalt nanoparticle Langmuir–Schaefer films on ethylene glycol subphase. Langmuir 26(17):13937–13943

    Article  Google Scholar 

  • Renaud G, Lazzari R, Leroy F (2009) Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf Sci Rep 64(8):255–380

    Google Scholar 

  • Rong G, Wang H, Skewis LR, Reinhard BRM (2008) Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett 8(10):3386–3393

    Article  Google Scholar 

  • Rupich SM, Shevchenko EV, Bodnarchuk MI, Lee B, Talapin DV (2009) Size-dependent multiple twinning in nanocrystal superlattices. J Am Chem Soc 132(1):289–296

    Article  Google Scholar 

  • Siffalovic P, Chitu L, Majkova E, Vegso K, Jergel M, Luby S, Capek I, Satka A, Maier GA, Keckes J, Timmann A, Roth SV (2010) Kinetics of nanoparticle reassembly mediated by UV-photolysis of surfactant. Langmuir 26(8):5451–5455

    Article  Google Scholar 

  • Smilgies DM, Heitsch AT, Korgel BA (2012) Stacking of hexagonal nanocrystal layers during Langmuir–Blodgett deposition. J Phys Chem B 116(20):6017–6026

    Google Scholar 

  • Smith DK, Goodfellow B, Smilgies DM, Korgel BA (2009) Self-assembled simple hexagonal AB2 binary nanocrystal superlattices: SEM, GISAXS, and defects. J Am Chem Soc 131(9):3281–3290

    Article  Google Scholar 

  • Vegso K, Siffalovic P, Weis M, Jergel M, Benkovicova M, Majkova E, Chitu L, Halahovets Y, Luby S, Capek I, Satka A (2011) In situ GISAXS monitoring of Langmuir nanoparticle multilayer degradation processes induced by UV photolysis. Phys Status Solidi A 208(11):2629–2634

    Article  Google Scholar 

  • Vegso K, Siffalovic P, Jergel M, Weis M, Benkovicova M, Majkova E, Luby S, Kocsis T, Capek I (2012) Silver nanoparticle monolayer-to-bilayer transition at the air/water interface as studied by the GISAXS technique: application of a new paracrystal model. Langmuir 28(25):9395–9404

    Article  Google Scholar 

  • Vegso K, Siffalovic P, Jergel M, Majkova E, Kocsis T, Benkovicova M, Luby S, Capek I, Perlich J, Roth SV (2014) Application of the paracrystal model to GISAXS analysis of the 3D self-assembled nanoparticle crystals. Phys Status Solidi B 251(6):1169–1177

    Article  Google Scholar 

  • Willingham B, Link S (2011) Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Opt Exp 19(7):6450–6461

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Slovak Research and Development Agency, Projects Nos. APVV-0125-11 and APVV-0308-11, Grant Agency VEGA Bratislava, Project No. 2/0041/11, and Centre of Excellence SAS FUN-MAT. The support of the SAS-TUBITAK JRP 2013/6 project, COST Action MP1203 and the project “Competence Center for New Materials, Advanced Technologies and Energy”, ITMS code 26240220073, supported by the Research and Development Operational Programme funded by the ERDF is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Vegso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vegso, K., Siffalovic, P., Jergel, M. et al. A non-equilibrium transient phase revealed by in situ GISAXS tracking of the solvent-assisted nanoparticle self-assembly. J Nanopart Res 16, 2536 (2014). https://doi.org/10.1007/s11051-014-2536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2536-6

Keywords

Navigation