Advertisement

Measurement, Modeling and Comparison of the Injector Performance and Engine Operation using Diesel, MDO and HFO

  • B. StengelEmail author
  • I. Najar
  • F. Pinkert
  • E. Hassel
  • B. Buchholz
Conference paper
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Maritime transport will have to face increasingly strict fuel legislation in the very near future. The introduction of the global Sulphur Cap by the IMO, which will come into full effect in 2020, requires for all ships trading outside of Sulphur Emission Control Areas (ECAs) to use fuel with a Sulphur content not exceeding 0.5%, Figure 1. In contrast to the introduction of new European emission limits in the automotive sector, this applies to existing ships. The DNV GL estimates that more than 70.000 ships will be affected by the regulation [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
  2. [2]
    Bosch, W.: „Der Einspritzgesetz‐Indikator, ein neues Meßgerät zur direkten Bestimmung des Einspritzgesetzes von Einzeleinspritzungen“, Motortechnische Zeitschrift, MTZ 25/7, 1964Google Scholar
  3. [3]
    Najar, I., Fink, C., Pinkert, F., Harndorf, H., 2014, October 2014, 26th European Conference on Liquid Atomization and Spray SystemsGoogle Scholar
  4. [4]
    Rostock University, BMWi-Project, Fuel and Air Management for Emission reduction, Final reportGoogle Scholar
  5. [5]
    Naber, J. and Siebers, D., SAE Technical Paper 960034, 1996,  https://doi.org/10.4271/960034.
  6. [6]
    Rabe, R., Potentiale einer Voreinspritzung zur Steuerung der Verbrennungsführung an schweröltauglichen Großdieselmotoren, Dissertation, Rostock, 2013Google Scholar
  7. [7]
    Reif, K., Moderne Diesel-Einspritzsysteme – Common Rail und Einzelzylindersysteme, Vieweg+Teubner, ISBN 978-3-8348-1312-1Google Scholar
  8. [8]
    Payri, R., et al., Using spray momentum flux measurements to understand the influence of Diesel nozzle geometry on spray characteristics. Fuel 84, pp. 551-561, 2005CrossRefGoogle Scholar
  9. [9]
    Siebers, D., Liquid-phase fuel penetration in Diesel sprays, SAE Paper 980809, 1998Google Scholar
  10. [10]
    Rabe, R. et al, Angepasste Einspritzstrate-gien zur Reduzierung der Abgasemissionen für schweröltaugliche Großdieselmotoren, 12. Tagung “DER ARBEITSPROZESS DES VERBRENNUNGSMOTORS”, Graz, 24.–25. September 2009Google Scholar
  11. [11]
    Desantes, J.M., et al., Influence on Diesel Injection Characteristics and Behavior Using Biodiesel Fuels, SAE-2009-01-0851, 2009Google Scholar
  12. [12]
    Sarvi, A., et al., Emissions from large-scale medium-speed diesel engines: 2. Influence of fuel type and operating mode, Fuel Processing Technology 89 (2008), 520-527CrossRefGoogle Scholar
  13. [13]
    Fink, C., Experimentelle Analyse von Einspritz- und Gemischbildungsvorgängen an schweröltauglichen Common-Rail-Injektoren mittelschnelllaufender Schiffsdieselmotoren, dissertation, Rostock UniversityGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • B. Stengel
    • 1
    Email author
  • I. Najar
    • 1
  • F. Pinkert
    • 2
  • E. Hassel
    • 3
  • B. Buchholz
    • 1
  1. 1.LKV Universität RostockRostockDeutschland
  2. 2.FVTR RostockRostockDeutschland
  3. 3.LTT Universität RostockRostockDeutschland

Personalised recommendations