Skip to main content

Basic Science, Design, and Materials

  • Chapter
Primary Knee Arthroplasty

Abstract

The knee is the major joint most commonly affected by osteoarthritis. Before the advent of knee replacement, conservative measures such as debridement, osteotomy and arthrodesis represented the basics of surgical management. Therefore, end-stage knee arthritis often led to a significant proportion of disabled patients. This was radically changed with the development of knee arthroplasty, which paralleled that of total hip arthroplasty in the 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Buechel FF Sr (2002) Long-term followup after mobile-bearing total knee replacement. Clin Orthop 404:40–50

    Article  PubMed  Google Scholar 

  • Callaghan JJ (2001) Mobile-bearing knee replacement: clinical results: a review of the literature. Clin Orthop 392:221–225

    Article  PubMed  Google Scholar 

  • Gschwend N, Drobny T (1992) A comparative study of two different knee systems in the same patient. Elsevier Science Publishers BV 359–364

    Google Scholar 

  • Jordan LR, Dowd JE, Olivo JL, Voorhorst PE (2002) The clinical history of mobile-bearing patella components in total knee arthroplasty. Orthopedics 25[Suppl 2]:S247–S250

    PubMed  Google Scholar 

  • Nelissen RG (2003) The impact of total joint replacement in rheumatoid arthritis. Best Pract Res Clin Rheumatol 17:831–846

    Article  PubMed  Google Scholar 

  • Price AJ, Rees JL, Beard D, Juszczak E, Carter S, White S, de Steiger R, Dodd CA, Gibbons M, McLardy-Smith P, Goodfellow JW, Murray DW (2003) A mobile-bearing total knee prosthesis compared with a fixed-bearing prosthesis. A multicentre single-blind randomised controlled trial. J Bone Joint Surg Br 85:62–67

    Article  PubMed  CAS  Google Scholar 

  • Ranawat CS (2002) History of total knee replacement. J South Orthop Assoc 11:218–226

    PubMed  Google Scholar 

  • Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS (2003) Factors affecting the durability of primary total knee prostheses. J Bone Joint Surg Am 85A:259–265

    Google Scholar 

  • Sorrells RB (2002) The clinical history and development of the low contact stress total knee arthroplasty. Orthopedics 25 [Suppl 2]:S207–S212

    PubMed  Google Scholar 

Bibliography

  • Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am 64:1328–1335

    PubMed  CAS  Google Scholar 

  • Banks SA, Hodge WA (1996) Accurate measurement of threedimensional knee replacement kinematics using singleplane fluoroscopy. IEEE Trans Biomed Eng 43:638–649

    Article  PubMed  CAS  Google Scholar 

  • Bloebaum RD, Bachus KN, Jensen JW, Scott DF, Hofmann AA (1998) Porous-coated metal-backed patellar components in total knee replacements. J Bone Joint Surg Am 80:518–528

    PubMed  CAS  Google Scholar 

  • Bourne RB, Whitewood CN (2002) The role of rotating platform total knee replacements: design considerations, kinematics, and clinical results. J Knee Surg Fall 15:247–253

    Google Scholar 

  • Braune W, Fischer O (1895) Der Gang des Menschen, 1. Teil. Versuche am unbelasteten und belasteten Menschen. Abhandl D Math-Phys Kl K Sächs Gesellsch Wissensch

    Google Scholar 

  • Chapman-Sheath PJ, Bruce WJ, Chung WK, Morberg P, Gillies RM, Walsh WR (2003) In vitro assessment of proximal polyethylene contact surface areas and stresses in mobile bearing knees. Med Eng Phys 25:437–443

    Article  PubMed  CAS  Google Scholar 

  • Cheng CK, Huang CH, Liau JJ, Huang CH (2003) The influence of surgical malalignment on the contact pressures of fixed and mobile bearing knee prostheses — a biomechanical study. Clin Biomech (Bristol, Avon) 18:231–236

    Article  Google Scholar 

  • Costigan PA, Wyss UP, Deluzio KJ, Li J (1992) Semiautomatic three-dimensional knee motion assessment system. Med Biol Eng Comput 30:343–350

    Article  PubMed  CAS  Google Scholar 

  • Deluzio KJ, Wyss UP, Li J, Costigan PA (1993) A procedure to validate three-dimensional motion assessment systems. J Biomech 26:753–759

    Article  PubMed  CAS  Google Scholar 

  • Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop 410:114–130

    Article  PubMed  Google Scholar 

  • Draganich LF, Piotrowski GA, Martell J, Pottenger LA (2002) The effects of early rollback in total knee arthroplasty on stair stepping. J Arthroplasty 17:723–730

    Article  PubMed  Google Scholar 

  • Freeman MA, Swanson SAV, Todd RC (1973) Total replacement of the knee using the Freeman-Swanson knee prosthesis. Clin Orthop Relat Res 94:153–170

    Article  PubMed  Google Scholar 

  • Gunston PH (1979) Polycentric knee arthroplasty. J Arthroplasty 2:1–9

    Google Scholar 

  • Hofmann AA, Evanich JD, Ferguson RP, Camargo MP (2001) Ten-to 14-year clinical followup for the cementless Natural Knee system. Clin Orthop 388:85–94

    Article  PubMed  Google Scholar 

  • Kaper BP, Smith PN, Bourne RB, Rorabeck CH, Robertson D (1999) Medium term results of a mobile bearing total knee replacement. Clin Orthop Relat Res 367:201–209

    Article  PubMed  Google Scholar 

  • Ladouceur DT (2000) Three-dimensional kinematics of seven activities of daily living commonly found in Asia. M Sc thesis, Queen’s University, Kingston, Canada

    Google Scholar 

  • Lafortune MA, Cavanagh PR, Sommer HJ, Kalenak A (1992) Three-dimensional kinematics of the human knee during walking. J Biomech 25:347–357

    Article  PubMed  CAS  Google Scholar 

  • Menschik A (1974) Mechanik des Kniegelenkes, Teil 1. Z Orthop 112:481–495

    PubMed  CAS  Google Scholar 

  • Morrison JB (1968) Bioengineering analysis of force actions transmitted by the knee joint. Bio Med Eng 3:164–170

    Google Scholar 

  • Mow Van C (1990) Biomechanics of arthrodial joints. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Mulholland SJ, Wyss UP (2001) Activities of daily living in non-Western cultures: range of motion requirements for hip and knee joint implants. Int J Rehab Res 24:191–198

    Article  CAS  Google Scholar 

  • Prodromos CC, Andriacchi TP, Galante JO (1985) A relationship between gait and clinical changes following high tibial osteotomy. J Bone Joint Surg Am 67:1188–1193

    PubMed  CAS  Google Scholar 

  • Ranawat CS (2002) History of total knee replacement. J South Orthop Assoc 11:218–226

    PubMed  Google Scholar 

  • Romagnoli S (1996) The unicompartmental knee prosthesis and the rotatory gonarthrosis kinematic. In: Insall JN, Scott WN, Scuderi GR (eds) Current concepts in primary and revision total knee arthroplasty. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Stiehl JB, Komistek RD, Dennis DA, Keblish PA (2001) Kinematics of the patellofemoral joint in total knee arthroplasty. J Arthroplasty 16:706–714

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Barrett DS (2003) Explicit finite element simulation of eccentric loading in total knee replacement. Clin Orthop 414:162–171

    Article  PubMed  Google Scholar 

  • Weber W, Weber E (1836) Mechanik der Gehwerkzeuge. Dieterichsche Buchhandlung, Göttingen

    Google Scholar 

  • Weidenhielm L, Svensson OK, Broström LA (1992) Change in adduction moment about the knee after high tibial osteotomy and prosthetic replacement in osteoarthritis of the knee. Clin Biomech 7:91–96

    Article  Google Scholar 

  • Winter DA (1979) Biomechanics of human movement. Wiley, New York

    Google Scholar 

  • Wyss UP, Costigan PA (1995) Gait analysis: a biomechanical tool in the development of artificial joints. In: Morscher EW (ed) Endoprosthetics. Springer, Berlin Heidelberg New York, pp 103–115

    Chapter  Google Scholar 

Bibliography

  • Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate retaining and substituting knee arthroplasties. J Arthroplasty 12:297–304

    Article  PubMed  CAS  Google Scholar 

  • Berger RA, Seel MJ, Crossett LS, Rubash HE (1995) The role of component malrotation in tibial polyethylene wear and failure after TKA. Orthop Trans 19:527

    Google Scholar 

  • Bizzini M, Boldt J, Munzinger U, Drobny T (2003) Rehabilitation guidelines after total knee arthroplasty. Orthopade 32(6):527–534

    PubMed  CAS  Google Scholar 

  • Boldt JG, Munzinger UK, Zanetti M, Hodler J (2004) Arthrofibrosis associated with total knee arthroplasty: gray-scale and power Doppler sonographic findings. AJR Am J Roentgenol 182(2):337–340

    PubMed  Google Scholar 

  • Boldt J, Munzinger U, Keblish P (2004) Comparison of isokinetic strength in resurfaced and retained patellae in bilateral TKA. J Arthroplasty 19(2):264

    Article  Google Scholar 

  • Bourne RB, Whitewood CN (2002) The role of rotating platform total knee replacements: design considerations, kinematics, and clinical results. J Knee Surg 15:247–253

    PubMed  Google Scholar 

  • Bourne RB, Masonis J, Anthony M (2003) An analysis of rotatingplatform total knee replacements. Clin Orthop 410:173–180

    Article  PubMed  Google Scholar 

  • Bradly J, Goodfellow JW, Oconnor J (1987) Radiographic study of bearing movement in unicompartmental Oxford knee replacement. JBJS 69B:598–601

    Google Scholar 

  • Buechel FF Sr (2002) Long-term followup after mobile-bearing total knee replacement. Clin Orthop 404:40–50

    Article  PubMed  Google Scholar 

  • Buechel FF (2003) Recurrent LCS rotating platform dislocation in revision total knee replacement: mechanism, management, and report of two cases. Orthopedics 26:647–649

    PubMed  Google Scholar 

  • Buechel FF Sr, Buechel FF Jr, Pappas MJ, D’Alessio J (2001) Twenty-year evaluation of meniscal bearing and rotating platform knee replacements. Clin Orthop 388:41–50

    Article  PubMed  Google Scholar 

  • Buechel FF Sr, Buechel FF Jr, Pappas MJ, Dalessio J (2002) Twenty-year evaluation of the New Jersey LCS Rotating Platform Knee Replacement. J Knee Surg 15:84–89

    PubMed  Google Scholar 

  • Buechel FF Sr, Buechel FF Jr, Pappas MJ (2003) Ten-year evaluation of cementless Buechel-Pappas meniscal bearing total ankle replacement. Foot Ankle Int 24:462–472

    PubMed  Google Scholar 

  • Callaghan JJ (2001) Mobile-bearing knee replacement: clinical results: a review of the literature. Clin Orthop 392:221–225

    Article  PubMed  Google Scholar 

  • Collier JP, Major MB, McNamara JL, Surprenant JA, Jensen RE (1991) Analysis of the failure of 122 polyethylene inserts from uncemented tibial components. Clin Orthop 273:232–242

    PubMed  Google Scholar 

  • Cornwall GB, Rudan J, Bryant JT, Deluzio KJ, Simurda MA, Sorbie C (1998) The distribution of surface degradation mechanisms in TKA. A comparison of fixed bearings versus mobile bearing designs. JBJS 80B [Suppl]:I–37

    Google Scholar 

  • Dennis DA, Komistek RD, Walker SA, Anderson DT (1997) In vivo analysis of tibiofemoral rotation: does screw home rotation occur after TKA? Trans Orthop Res Soc 23:386

    Google Scholar 

  • Dorr LD (2002) Contrary view: wear is not an issue. Clin Orthop 404:96–99

    Article  PubMed  Google Scholar 

  • Gill GS, Joshi AB, Mills DM (1999) Total condylar knee arthroplasty. 16-to 21-year results. Clin Orthop 367:210–215

    PubMed  Google Scholar 

  • Jordan LR, Olivio JL, Voorhoorst PE (1997) Survival analysis of cementless meniscal bearing total knee arthroplasty. Clin Orthop 338:119–123

    Article  PubMed  Google Scholar 

  • Jordan LR, Dowd JE, Olivo JL, Voorhorst PE (2002) The clinical history of mobile-bearing patella components in total knee arthroplasty. Orthopedics 25[Suppl 2]:s247–s250

    PubMed  Google Scholar 

  • Kijm H, Pelker PR, Lynch JK, Gibson DH, Irving JF (1995) Radiographic analysis of the “rollback” phenomenon in posterior cruciate retaining total knee arthroplasty. AAOS 19:1170

    Google Scholar 

  • Kramers-de Quervain A, Stüssi E, Müller R, Drobny T, Munzinger U, Gschwend N (1997) Quantitative gait analysis after bi-lateral TKA with two different systems within each subject. J Arthroplasty 12:168–179

    Article  PubMed  CAS  Google Scholar 

  • Kuster MS, Wood GA, Stachowiak GW, Gächter A (1997) Joint load considerations in total knee replacement. JBJS 79B: 109–113

    Article  Google Scholar 

  • Moilanen T, Freemann MAR (1995) The case for resection of the posterior cruciate ligament. J Arthroplasty 10:564–567

    Article  Google Scholar 

  • Poilvache PL, Insall JN, Scuderi GR, Font-Rodriguez DE (1996) Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop 331:35–46

    Article  PubMed  Google Scholar 

  • Polyzoides AJ (1996) The Rotaglide total knee arthroplasty. Prosthesis, design and early results. J Arthroplasty 11:453–459

    Article  PubMed  CAS  Google Scholar 

  • Price AJ, Rees JL, Beard D, Juszczak E, Carter S, White S, de Steiger R, Dodd CA, Gibbons M, McLardy-Smith P, Goodfellow JW, Murray DW (2003) A mobile-bearing total knee prosthesis compared with a fixed-bearing prosthesis. A multicentre single-blind randomised controlled trial. J Bone Joint Surg Br 85:62–67

    Article  PubMed  CAS  Google Scholar 

  • Ranawat CS (2002) History of total knee replacement. J South Orthop Assoc 11:218–226

    PubMed  Google Scholar 

  • Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS (2003) Factors affecting the durability of primary total knee prostheses. J Bone Joint Surg Am 85A:259–265

    Google Scholar 

  • Sathavisan S, Walker PS (1998) Optimisation of meniscal knee design to eliminate the stresses which cause delamination wear. JBJS 80B[Suppl I] 137

    Google Scholar 

  • Schunck J, Jerosch J (2003) Knee arthroplasty. Mobile-and fixed-bearing design. Orthopade 32:477–483

    PubMed  CAS  Google Scholar 

  • Sorrells RB (2002) The clinical history and development of the low contact stress total knee arthroplasty. Orthopedics 25 [Suppl 2]:S207–S212

    PubMed  Google Scholar 

  • Stiehl JB (1996) Comparison of long-term results with cruciate substituting or sparing mobile bearing cementless total knee arthroplasty. Orthop Trans 20:928

    Google Scholar 

  • Stiehl JB, Abbott B (1995) A morphological analysis of the transepicondylar axis and the relationship of the mechanical axis of the leg. J Arthroplasty 10:785–789

    Article  PubMed  CAS  Google Scholar 

  • Stiel JB, Cheverny PM (1996) Femoral rotational alignment using the tibial shaft axis in total knee arthroplasty. Clin Orthop 331:47–55

    Article  Google Scholar 

  • Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA (1995) Fluoroscopic analysis of kinematics after posterior cruciate retaining arthroplasty. JBJS 776:884–889

    Google Scholar 

  • Tarnowski LE, Andriacchi TP, Berger RA, Galante JO, Rosenberg AG (1998) Three dimensional motion of cruciate retaining and cruciate stabilized knees during walking. Trans Orthop Res Soc 23:804

    Google Scholar 

  • Vertullo CJ, Easley ME, Scott WN, Insall JN (2001) Mobile bearings in primary knee arthroplasty. J Am Acad Orthop Surg 9:355–364

    PubMed  CAS  Google Scholar 

  • Wasielewski RC (2002) The causes of insert backside wear in total knee arthroplasty. Clin Orthop 404:232–246

    Article  PubMed  Google Scholar 

  • Bloebaum RD et al (1997) Post-mortem analysis of consecutively retrieved asymmetric porous-coated tibial components. J Arthroplasty 12:920–929

    Article  PubMed  CAS  Google Scholar 

  • Blunn GW et al (1991) The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop 253–260

    Google Scholar 

  • Buchanan RA et al (1987) Ion implantation of surgical Ti-6A1-4 V for improved resistance to wear-accelerated corrosion. J Biomed Mater Res 21:355–366

    Article  PubMed  CAS  Google Scholar 

  • Costa L et al (1998) Oxidation in orthopaedic UHMWPE sterilized by gamma-radiation and ethylene oxide. Biomaterials 19:659–668

    Article  PubMed  CAS  Google Scholar 

  • Dobbs HS et al (1983) Heat treatment of cast Co-Cr-Mo for orthopaedic implant use. J Mat Sci 18:391–401

    Article  CAS  Google Scholar 

  • Goldman M et al (1998) The influence of sterilization technique and ageing on the structure and morphology of medical-grade ultrahigh molecular weight polyethylene. J Mat Sci Mat Med 207–212

    Google Scholar 

  • Gomez-Barrena E et al (1998) Role of polyethylene oxidation and consolidation defects in cup performance. Clin Orthop 105–117

    Google Scholar 

  • Imam MA et al (1996) Titanium alloys as implant materials. In: Browns SA, Lemons JE (eds) Medical application of titanium and its alloy. ASTM STP 1272. American Society for Testing Materials, pp 3–16

    Google Scholar 

  • Kral MV et al (1993) Erosion resistance of diamond coatings. Wear 166:7–16

    Article  CAS  Google Scholar 

  • Kurtz SM et al (1999) Advances in the processing, sterilization, and cross-linkage of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20:1659–1688

    Article  PubMed  CAS  Google Scholar 

  • Muratoglu OK et al (1999) Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE). Biomaterials 20:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • Muratoglu OK et al (2001) Markedly improved adhesive wear and delamination resistance with a high cross-linked UHMWPE for use in total knee arthoplasty, 47th annual meeting ORS San Francisco, California, p 1009

    Google Scholar 

  • Oonishi H et al (1998) Retrieved total hip prostheses, part I. The effect of cup thickness, head size and fusion defects on wear. J Mat Sci Mat Med 9:393–401

    Article  CAS  Google Scholar 

  • Rieker CB et al (1998) Clinical wear performance of metal-onmetal hip arthroplasties. In: Jacobs JJ, Craig TL (eds) Total joint replacement. ASTM STP 1346. American Society for Testing Materials, pp 144–156

    Google Scholar 

  • Semlitsch M et al (1986) Development of a vital, high-strength titanium-aluminium-niobium alloy for surgical implants. In: Christel P, Meunier A, Lee AJC (eds) Biological and biomechanical performance of biomaterials. Elsevier, Amsterdam, pp 69–74

    Google Scholar 

  • Semlitsch M et al (1995) 15 years’ experience with the Ti-6A1-7Nb alloy for joint prostheses (15 Jahre Erfahrung mit Ti6AL-7Nb-Legierung für Gelenkprothesen). Biomed Technik (Berlin) 40:347–355

    Article  CAS  Google Scholar 

  • Simmons CA et al (1999) Osseointegration of sintered poroussurfaced and plasma spray-coated implants: an animal model study of early post implantation healing response and mechanical stability. J Biomed Mat Res 47:127–138

    Article  CAS  Google Scholar 

  • Streicher RM et al (1996) Metal-on metal articulation for artificial hip joints: laboratory study and clinical results. Proc Inst Mech Eng 210:223–232

    CAS  Google Scholar 

  • Wroblewski BM et al (1999) Low-friction arthroplasty of the hip using alumina ceramic and cross-linked polyethylene. A ten-year follow-up report. J Bone Joint Surg Br 81:54–55

    Article  PubMed  CAS  Google Scholar 

  • Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg 64A:1328–1335

    Google Scholar 

  • Andriacchi TP, Hurwitz DE (1997) Gait biomechanics and the evolution of total joint replacement. Gait Posture 5:256–264

    Article  Google Scholar 

  • Andriacchi TP, Yoder D, Conley A, Rosenberg A, Sum J, Galante JO (1997) Patellofemoral design influences function following total knee arthroplasty. J Arthroplasty 12:243–249

    Article  PubMed  CAS  Google Scholar 

  • Banks SA, Markovich GD, Hodge WA (1997) The mechanics of knee replacements during gait. In vivo fluoroscopic analysis of two designs. Am J Knee Surg 10:261–267

    PubMed  CAS  Google Scholar 

  • Benedetti MG, Bonato P, Catani F, D’Alessio T, Knaflitz M, Marcacci M, Simoncini L (1999) Myoelectric activation pattern during gait in total knee replacement: relationship with kinematics, kinetics, and clinical outcome. IEEE Trans Rehabil Eng 7:140–149

    Article  PubMed  CAS  Google Scholar 

  • Berman AT, Zarro VJ, Bosacco SJ, Israelite C (1987) Quantitative gait analysis after unilateral or bilateral total knee replacement. J Bone Joint Surg Am 69:1340–1345

    PubMed  CAS  Google Scholar 

  • Bolanos AA, Colizza WA, McCann PD, Gotlin RS, Wootten ME, Kahn BA, Insall JN (1998) A comparison of isokinetic strength testing and gait analysis in patients with posterior cruciate-retaining and substituting knee arthroplasties. J Arthroplasty 13:906–915

    Article  PubMed  CAS  Google Scholar 

  • Dennis DA, Komistek RD, Walker SA, Cheal EJ, Stiehl JB (2001) Femoral condylar lift-off in vivo in total knee arthroplasty. J Bone Joint Surg Br 83:33–39

    Article  PubMed  CAS  Google Scholar 

  • Dorr LD, Ochsner JL, Gronley J, Perry J (1988) Functional comparison of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty. Clin Orthop Relat Res 236:36–43

    PubMed  Google Scholar 

  • Heller MO, Bergman G, Deuretzbacher G, Dürselen L, Pohl M, Claes L, Haas NP, Duda GN (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893

    Article  PubMed  CAS  Google Scholar 

  • Hilding MB, Ryd L, Toksvig-Larsen S, Mann A, Stenstrom A (1999) Gait affects tibial component fixation. J Arthroplasty 14:589–593

    Article  PubMed  CAS  Google Scholar 

  • Kelman GJ, Biden EN, Wyatt MP, Ritter MA, Colwell CW Jr (1989) Gait laboratory analysis of a posterior cruciate-sparing total knee arthroplasty in stair ascent and descent. Clin Orthop 248:21–25; discussion 25-26

    PubMed  Google Scholar 

  • Kramers-de Quervain A, Stüssi E, Müller R, Drobny T, Munzinger U, Gschwend N (1997) Quantitative gait analysis after bilateral total knee replacement with two different systems within each subject. J Arthroplasty 12:168–179

    Article  PubMed  CAS  Google Scholar 

  • Kramers-de Quervain A, Reinschmidt C, Munzinger U, Stüssi E (1999) Pattern of stair ambulation in highly functional individuals after total knee joint replacement. XVIIth ISB Congress Calgary, p 299

    Google Scholar 

  • Kramers-de Quervain A, Tunesi R, Luder G, Stüssi E, Stacoff A (2001) Pattern of stair ambulation in individuals with restricted knee motion after total knee arthroplasty in comparison to highly functional arthroplasty subjects and to a healthy control group (Scherb Award). Proceedings of the 18th ISB Congress Congress, Zürich, p 366

    Google Scholar 

  • Lee TH, Tsuchida T, Kitahara H, Moriya H (1999) Gait analysis before and after unilateral total knee arthroplasty. Study using a linear regression model of normal controls — women without arthropathy. J Orthop Sci 4:13–21

    Article  PubMed  CAS  Google Scholar 

  • Pagnano MW, Cushner FD, Scott WN (1998) Role of the posterior cruciate ligament in total knee arthroplasty. J Am Acad Orthop Surg 6:176–187

    PubMed  CAS  Google Scholar 

  • Paul JP (1998) History and fundamentals of gait analysis. Biomed Mater Eng 8:123–135

    PubMed  CAS  Google Scholar 

  • Polio FE, Jackson RW, Koeter S, Ansari S, Motley GS, Rathjen KW (2000) Walking, chair rising, and stair climbing after total knee arthroplasty: patellar resurfacing versus nonresurfacing. Am J Knee Surg 13:103–108; discussion 108-109

    Google Scholar 

  • Simon SR, Trieshmann HW, Burdett RG, Ewald FC, Sledge CB (1983) Quantitative gait analysis after total knee arthroplasty for monarticular degenerative arthritis. J Bone Joint Surg Am 65:605–613

    PubMed  CAS  Google Scholar 

  • Uvehammer J, Karrholm J, Brandsson S, Herberts P, Carlsson L, Karlsson J, Regner L (2000) In vivo kinematics of total knee arthroplasty: flat compared with concave tibial joint surface. J Orthop Res 18:856–864

    Article  PubMed  CAS  Google Scholar 

  • Wilson SA, McCann PD, Gotlin RS, Ramakrishnan HK, Wootten ME, Insall JN (1996) Comprehensive gait analysis in posterior-stabilized knee arthroplasty. J Arthroplasty 11: 359–367

    Article  PubMed  CAS  Google Scholar 

  • Wimmer MA, Andriacchi TP (1997) Tractive forces during rolling motion of the knee: implications for wear in total knee replacement. J Biomech 30:131–137

    Article  PubMed  CAS  Google Scholar 

  • Calonius O, Saikko V (2002) Analysis of polyethylene particles produced in different wear conditions in vitro. Clin Orthop 399:219–230

    Article  PubMed  Google Scholar 

  • Chapman-Sheath PJ, Bruce WJ, Chung WK, Morberg P, Gillies RM, Walsh WR (2003) In vitro assessment of proximal polyethylene contact surface areas and stresses in mobile bearing knees. Med Eng Phys 25:437–443

    Article  PubMed  CAS  Google Scholar 

  • Dorr LD (2002) Contrary view: wear is not an issue. Clin Orthop 404:96–99

    Article  PubMed  Google Scholar 

  • Heimke G, Leyen S, Willmann G (2002) Knee arthroplasty: recently developed ceramics offer new solutions. Biomaterials 23:1539–1551

    Article  PubMed  CAS  Google Scholar 

  • Majewski M, Weining G, Friederich NF (2002) Posterior femoral impingement causing polyethylene failure in total knee arthroplasty. J Arthroplasty 17:524–526

    Article  PubMed  Google Scholar 

  • Puertolas JA, Larrea A, Gomez-Barrena E (2001) Fracture behavior of UHMWPE in non-implanted, shelf-aged knee prostheses after gamma irradiation in air. Biomaterials 22: 2107–2114

    Article  PubMed  CAS  Google Scholar 

  • Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS (2003) Factors affecting the durability of primary total knee prostheses. J Bone Joint Surg Am 85A:259–265

    Google Scholar 

  • Taylor M, Barrett DS (2003) Explicit finite element simulation of eccentric loading in total knee replacement. Clin Orthop 414:162–171

    Article  PubMed  Google Scholar 

  • Walker PS, Haider H (2003) Characterizing the motion of total knee replacements in laboratory tests. Clin Orthop 410: 54–68

    Article  PubMed  Google Scholar 

  • Wasielewski RC (2002) The causes of insert backside wear in total knee arthroplasty. Clin Orthop 404:232–246

    Article  PubMed  Google Scholar 

Bibliography

  • Banks SA (1992) Model based 3D kinematic estimation from 2D perspective silhouettes: application with total knee prostheses. PhD dissertation, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Banks SA, Hodge WA (1996) Accurate measurement of threedimensional knee replacement kinematics using singleplane fluoroscopy. IEEE Trans Biomed Eng 43:638–649

    Article  PubMed  CAS  Google Scholar 

  • Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and substituting knee arthroplasties. J Arthroplasty 12:297–304

    Article  PubMed  CAS  Google Scholar 

  • Banks SA, Markovich GD, Hodge WA (1997) The mechanics of knee replacements during gait: in vivo fluoroscopic analysis of two designs. Am J Knee Surg 10:261–267

    PubMed  CAS  Google Scholar 

  • Banks SA, Harman MK, Hodge WA, Markovich GD, Rester M (1997) Kinematics of the medial unicondylar knee replacement. In: Cartier P, Epinette JA, Deschamps G, Hernigou P (eds) Unicompartmental knee arthroplasty. Expansion Scientifique Francaise, Paris, pp 27–31

    Google Scholar 

  • Callaghan JJ, Squire MW, Goetz DD, Sullivan PM, Johnston RC (2000) Cemented rotating-platform total knee replacement. A nine to twelve-year follow-up study. J Bone Joint Surg 82:705–711

    Article  PubMed  CAS  Google Scholar 

  • D’Lima DD, Trice M, Urquhat AG, Colwell CW (2000) Comparison between the kinematics of fixed and rotating bearing knee prostheses. Clin Orthop 380:151–157

    Article  Google Scholar 

  • Gillis A, Furman B, Schmieg J, Bhattacharyya S, Li S (2001) The effect of post impingement in posterior stabilized total knee replacements on femoral rotation and damaged area as determined from analysis of retrieved tibial inserts. Trans Orthop Res Soc 47

    Google Scholar 

  • Lewandowski P, Askew M, Lin D, Hurst F, Melby A (1997) Kinematics of posterior cruciate ligament-retaining and-sacrificing mobile bearing total knee arthroplasties. An in vitro comparison of the New Jersey LCS meniscal bearing and rotating platform prostheses. J Arthroplasty 12:777–784

    Article  PubMed  CAS  Google Scholar 

  • Nilsson KG, Karrholm J, Gadegaard P (1991) Abnormal kinematics of the artificial knee. Roentgen stereophotogrammetric analysis of 10 Miller-Galante and five New Jersey LCS knees. Acta Orthop Scand 62:440–446

    Article  PubMed  CAS  Google Scholar 

  • Noble PC, Vagner G, Conditt M (2001) The role of the cam mechanism in posterior stabilized TKR: an analysis of 75 retrieved components. Trans Orthop Res Soc 47

    Google Scholar 

  • Stiehl JB, Komistek RD, Dennis DA, Paxson RD, Hoff WA (1995) Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg 77B:884–889

    Google Scholar 

  • Stiehl JB, Dennis DA, Komistek RD, Keblish PA (1997) In vivo kinematic analysis of a mobile bearing total knee prothesis. Clin Orthop 345:60–66

    PubMed  Google Scholar 

  • Stiehl JB, Voorhorst PE, Keblish P, Sorrells RB (1997) Comparison of range of motion after posterior cruciate ligament retention or sacrifice with a mobile bearing total knee arthroplasty. Am J Knee Surg 10:216–220

    PubMed  CAS  Google Scholar 

  • Stiehl J, Dennis D, Komistek R, Crane H (1999) In vivo determination of condylar lift-off and screw-home in a mobile bearing total knee arthroplasty. J Arthroplasty 14:293–299

    Article  PubMed  CAS  Google Scholar 

  • Stiehl J, Komistek R, Dennis D (1999) Detrimental kinematics of a flat on flat total condylar knee arthroplasty. Clin Orthop 365:139–148

    Article  PubMed  Google Scholar 

  • Todo S, Kadoya Y, Moilanen T, Kobayashi A, Yamano Y, Iwaki H, Freeman M (1999) Anteroposterior and rotational movement of femur during knee flexion. Clin Orthop 362:162–170

    PubMed  Google Scholar 

  • Tupling S, Pierrynowski M (1987) Use of Cardan angles to locate rigid bodies in three-dimensional space. Med Biol Eng Comput 25:527–532

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munzinger, U.K. et al. (2004). Basic Science, Design, and Materials. In: Munzinger, U.K., Boldt, J.G., Keblish, P.A. (eds) Primary Knee Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18816-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18816-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62304-2

  • Online ISBN: 978-3-642-18816-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics