Skip to main content

On Certain Rough Inclusion Functions

  • Chapter
Transactions on Rough Sets IX

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 5390))

Abstract

In this article we further explore the idea which led to the standard rough inclusion function. As a result, two more rough inclusion functions (RIFs in short) are obtained, different from the standard one and from each other. With every RIF we associate a mapping which is in some sense complementary to it. Next, these complementary mappings (co-RIFs) are used to define certain metrics. As it turns out, one of these distance functions is an instance of the Marczewski–Steinhaus metric. While the distance functions may directly be used to measure the degree of dissimilarity of sets of objects, their complementary mappings – also discussed here – are useful in measuring of the degree of mutual similarity of sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gomolińska, A.: On three closely related rough inclusion functions. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 142–151. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Polkowski, L., Skowron, A.: Rough mereology. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS (LNAI), vol. 869, pp. 85–94. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  3. Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. Int. J. Approximated Reasoning 15, 333–365 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set approach to computation. Computational Intelligence 17, 472–492 (2001)

    Article  MathSciNet  Google Scholar 

  5. Leśniewski, S.: Foundations of the General Set Theory 1 (in Polish). Works of the Polish Scientific Circle, Moscow, vol. 2 (1916); Also In: [6], pp. 128–173

    Google Scholar 

  6. Surma, S.J., Srzednicki, J.T., Barnett, J.D. (eds.): Stanisław Leśniewski Collected Works. Kluwer/Polish Scientific Publ., Dordrecht/Warsaw (1992)

    Google Scholar 

  7. Borkowski, L. (ed.): Jan Łukasiewicz – Selected Works. North Holland/Polish Scientific Publ., Amsterdam/Warsaw (1970)

    Google Scholar 

  8. Łukasiewicz, J.: Die logischen Grundlagen der Wahrscheinlichkeitsrechnung, Cracow (1913); In: [7], pp. 16-63 (English translation)

    Google Scholar 

  9. Drwal, G., Mrózek, A.: System RClass – software implementation of a rough classifier. In: Kłopotek, M.A., Michalewicz, M., Raś, Z.W. (eds.) Proc. 7th Int. Symp. Intelligent Information Systems (IIS 1998), Malbork, Poland, June 1998, pp. 392–395 (1998)

    Google Scholar 

  10. Stepaniuk, J.: Knowledge discovery by application of rough set models. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, pp. 137–233. Physica, Heidelberg (2001)

    Google Scholar 

  11. Pawlak, Z.: Rough sets. Int. J. Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pawlak, Z.: Information Systems. Theoretical Foundations (in Polish). Wydawnictwo Naukowo-Techniczne, Warsaw (1983)

    Google Scholar 

  13. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  14. Pawlak, Z.: Rough set elements. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 10–30. Physica, Heidelberg (1998)

    Google Scholar 

  15. Pawlak, Z.: A treatise on rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 1–17. Springer, Heidelberg (2005)

    Google Scholar 

  16. Bazan, J.G., Skowron, A., Swiniarski, R.: Rough sets and vague concept approximation: From sample approximation to adaptive learning. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 39–63. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Peters, J.F.: Approximation spaces for hierarchical intelligent behavioral system models. In: Dunin-Kȩplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Techniques in Multiagent Systems, pp. 13–30. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness of objects: Extension of approximation space model. Fundamenta Informaticae 79, 497–512 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T.Y., Wildberger, A.M. (eds.) Soft Computing. Simulation Councils, pp. 18–21. Simulation Councils, San Diego (1995)

    Google Scholar 

  20. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Skowron, A., Stepaniuk, J., Peters, J.F., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72, 363–378 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information granulation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 175–189. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Ziarko, W.: Variable precision rough set model. J. Computer and System Sciences 46, 39–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ziarko, W.: Probabilistic decision tables in the variable precision rough set model. Computational Intelligence 17, 593–603 (2001)

    Article  Google Scholar 

  25. Ziarko, W.: Probabilistic rough sets. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS, vol. 3641, pp. 283–293. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Ziarko, W.: Stochastic approach to rough set theory. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS, vol. 4259, pp. 38–48. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Yao, Y.Y.: Decision-theoretic rough set models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS, vol. 4481, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Yao, Y.Y.: Probabilistic rough set approximations. Int. J. of Approximate Reasoning (in press, 2007), doi:10.1016/j.ijar.2007.05.019

    Google Scholar 

  29. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. Int. J. of Man–Machine Studies 37, 793–809 (1992)

    Article  Google Scholar 

  30. Pawlak, Z., Skowron, A.: Rough membership functions. In: Fedrizzi, M., Kacprzyk, J., Yager, R.R. (eds.) Advances in the Dempster–Shafer Theory of Evidence, pp. 251–271. John Wiley & Sons, Chichester (1994)

    Google Scholar 

  31. Gomolińska, A.: Possible rough ingredients of concepts in approximation spaces. Fundamenta Informaticae 72, 139–154 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Nguyen, H.S., Skowron, A., Stepaniuk, J.: Granular computing: A rough set approach. Computational Intelligence 17, 514–544 (2001)

    Article  MathSciNet  Google Scholar 

  33. Zhang, M., Xu, L.D., Zhang, W.X., Li, H.Z.: A rough set approach to knowledge reduction based on inclusion degree and evidence reasoning theory. Expert Systems 20, 298–304 (2003)

    Article  Google Scholar 

  34. Marczewski, E., Steinhaus, H.: On a certain distance of sets and the corresponding distance of functions. Colloquium Mathematicum 6, 319–327 (1958)

    MathSciNet  MATH  Google Scholar 

  35. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bull. de la Société Vaudoise des Sciences Naturelles 44, 223–270 (1908)

    Google Scholar 

  36. Kulczyński, S.: Die Pflanzenassociationen der Pieninen. Bull. Internat. Acad. Polon. Sci. Lett., Sci. Math. et Naturelles, serie B, suppl. II 2, 57–203 (1927)

    Google Scholar 

  37. Rand, W.: Objective criteria for the evaluation of clustering methods. J. of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  38. Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38, 1409–1438 (1958)

    Google Scholar 

  39. Xu, Z.B., Liang, J.Y., Dang, C.Y., Chin, K.S.: Inclusion degree: A perspective on measures for rough set data analysis. Information Sciences 141, 227–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, W.X., Leung, Y.: Theory of including degrees and its applications to uncertainty inference. In: Proc. of 1996 Asian Fuzzy System Symposium, pp. 496–501 (1996)

    Google Scholar 

  41. An, A., Cercone, N.: Rule quality measures for rule induction systems: Description and evaluation. Computational Intelligence 17, 409–424 (2001)

    Article  Google Scholar 

  42. Kryszkiewicz, M.: Fast discovery of representative association rules. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 214–221. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  43. Tsumoto, S.: Modelling medical diagnostic rules based on rough sets. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 475–482. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  44. Albatineh, A.N., Niewiadomska-Bugaj, M., Mihalko, D.: On similarity indices and correction for chance agreement. J. of Classification 23, 301–313 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wallace, D.L.: A method for comparing two hierarchical clusterings: Comment. J. of the American Statistical Association 78, 569–576 (1983)

    Google Scholar 

  46. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gomolińska, A. (2008). On Certain Rough Inclusion Functions. In: Peters, J.F., Skowron, A., Rybiński, H. (eds) Transactions on Rough Sets IX. Lecture Notes in Computer Science, vol 5390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89876-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89876-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89875-7

  • Online ISBN: 978-3-540-89876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics