Skip to main content

A Multiscale Model of Cell Migration in Three-Dimensional Extracellular Matrix

  • Chapter
  • First Online:
Cell Movement
  • 926 Accesses

Abstract

Cell migration in a three-dimensional (3D) extracellular matrix (ECM) is one of the key biological processes. Yet many fundamental questions remain unanswered. In this chapter, we introduce a modeling framework for a 3D, element-based, multiscale cell migration model. This model takes into account the mechanosensing signaling pathway, cell morphological dynamics, and cell-ECM interactions. To integrate the mechanochemical dynamics, we developed an implicit integration method to calculate forces for the elements and a moving boundary reaction-diffusion solver. The model is partially tested for cell migration on a curved substrate. Further development is needed to couple the cell model with a mechanical ECM model. This model can be used to test hypotheses of cell-ECM interactions and cell migration in tissue environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedl, P., Alexander, S. (2011). Cancer invasion and the microenvironment: plasticity and reciprocity. Cell, 147(5), 992–1009.

    Article  Google Scholar 

  2. Califano, J.P. and Reinhart-King, C.A. (2008). A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cellular and Molecular Bioengineering, 1(2–3), p. 122.

    Article  Google Scholar 

  3. Driscoll, M.K., Sun, X., Guven, C., Fourkas, J.T. and Losert, W. (2014). Cellular contact guidance through dynamic sensing of nanotopography. ACS nano, 8(4), pp. 3546–3555.

    Article  Google Scholar 

  4. Kim, D.H., Provenzano, P.P., Smith, C.L. and Levchenko, A. (2012). Matrix nanotopography as a regulator of cell function. J Cell Biol, 197(3), pp. 351–360.

    Article  Google Scholar 

  5. Stroka, K.M., Jiang, H., Chen, S.H., Tong, Z., Wirtz, D., Sun, S.X. and Konstantopoulos, K. (2014). Water permeation drives tumor cell migration in confined microenvironments. Cell, 157(3), pp. 611–623.

    Article  Google Scholar 

  6. Friedl, P. and Wolf, K. (2009). Plasticity of cell migration: a multiscale tuning model. The Journal of cell biology, pp. jcb-200909003.

    Google Scholar 

  7. Xu F, Zhang M, He W, Han R, Xue F, Liu Z, Zhang F, Lippincott-Schwartz J, Xu P. (2017). Live cell single molecule-guided Bayesian localization super resolution microscopy. Cell research, 27(5), 713.

    Article  Google Scholar 

  8. Chen, B.C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W., Janetopoulos, C., Wu, X.S., Hammer, J.A., Liu, Z. and English, B.P. (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208), p.1257998.

    Article  Google Scholar 

  9. Lee, B., Konen, J., Wilkinson, S., Marcus, A.I. and Jiang, Y. (2017). Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics. Scientific reports, 7, p.39498.

    Article  Google Scholar 

  10. Oakes, P.W., Wagner, E., Brand, C.A., Probst, D., Linke, M., Schwarz, U.S., Glotzer, M. and Gardel, M.L. (2017). Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nature Communications, 8, p.15817.

    Article  Google Scholar 

  11. Franck, C., Maskarinec, S.A., Tirrell, D.A. and Ravichandran, G. (2011). Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PloS one, 6(3), p.e17833.

    Article  Google Scholar 

  12. Newman, TJ. (2005). Modeling multicellular systems using subcellular elements, J. Math Biosci Eng, 2 (3) , pp. 611–622

    Article  MathSciNet  Google Scholar 

  13. Gallant, N.D., Michael, K.E. and Garcia, A.J. (2005). Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Molecular biology of the cell, 16(9), pp. 4329–4340.

    Article  Google Scholar 

  14. Barnhart, E.L., Lee, K.C., Keren, K., Mogilner, A. and Theriot, J.A. (2011). An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS biology, 9(5), p.e1001059.

    Article  Google Scholar 

  15. Shao, D., Levine, H. and Rappel, W.J. (2012). Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proceedings of the National Academy of Sciences, 109(18), pp. 6851–6856.

    Article  Google Scholar 

  16. Rubinstein, B., Fournier, M.F., Jacobson, K., Verkhovsky, A.B. and Mogilner, A. (2009). Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophysical journal, 97(7), pp. 1853–1863.

    Article  Google Scholar 

  17. Checa, S., Rausch, M.K., Petersen, A., Kuhl, E. and Duda, G.N. (2015). The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization. Biomechanics and modeling in mechanobiology, 14(1), pp. 1–13.

    Article  Google Scholar 

  18. Shreiber, D.I., Barocas, V.H. and Tranquillo, R.T. (2003). Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophysical journal, 84(6), pp. 4102–4114.

    Article  Google Scholar 

  19. Bauer, A.L., Jackson, T.L. and Jiang, Y. (2009). Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS computational biology, 5(7), p.e1000445.

    Article  MathSciNet  Google Scholar 

  20. Zaman, M.H., Trapani, L.M., Sieminski, A.L., MacKellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A. and Matsudaira, P. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences, 103(29), pp. 10889–10894.

    Article  Google Scholar 

  21. Tozluo?lu, M., Tournier, A.L., Jenkins, R.P., Hooper, S., Bates, P.A. and Sahai, E. (2013). Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nature cell biology, 15(7), p.751.

    Google Scholar 

  22. Nelson, C.M. and Bissell, M.J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol., 22, pp. 287–309.

    Article  Google Scholar 

  23. Yamada, K.M. and Cukierman, E. (2007). Modeling tissue morphogenesis and cancer in 3D. Cell, 130(4), pp. 601–610.

    Article  Google Scholar 

  24. Grinnell, F. and Petroll, W.M. (2010). Cell motility and mechanics in three-dimensional collagen matrices. Annual review of cell and developmental biology, 26, pp. 335–361.

    Article  Google Scholar 

  25. DuFort, C.C., Paszek, M.J. and Weaver, V.M. 2011. Balancing forces: architectural control of mechanotransduction. Nature reviews Molecular cell biology, 12(5), p.308.

    Article  Google Scholar 

  26. Baker, B.M. and Chen, C.S. (2012). Deconstructing the third dimension?how 3D culture microenvironments alter cellular cues. J Cell Sci, 125(13), pp. 3015–3024.

    Article  Google Scholar 

  27. Petrie, R.J., Gavara, N., Chadwick, R.S. and Yamada, K.M., 2012. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J Cell Biol, 197(3), pp. 439–455.

    Article  Google Scholar 

  28. Buehler, M.J. (2006). Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. Journal of Materials Research, 21(8), pp. 1947–1961.

    Article  Google Scholar 

  29. Buehler, M.J. (2006). Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences, 103(33), pp. 12285–12290.

    Article  Google Scholar 

  30. Gautieri, A., Vesentini, S., Redaelli, A. and Buehler, M.J. (2011). Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano letters, 11(2), pp. 757–766.

    Article  Google Scholar 

  31. Broedersz, C.P., Storm, C. and MacKintosh, F.C. (2008). Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers. Physical review letters, 101(11), p.118103.

    Google Scholar 

  32. Rubinstein, M. and Panyukov, S. (1997). Nonaffine deformation and elasticity of polymer networks. Macromolecules, 30(25), pp. 8036–8044.

    Article  Google Scholar 

  33. Stein, A.M., Vader, D.A., Weitz, D.A. and Sander, L.M. (2011). The micromechanics of three?dimensional collagen?I gels. Complexity, 16(4), pp. 22–28.

    Article  Google Scholar 

  34. Head, D.A., Levine, A.J. and MacKintosh, F.C. (2003). Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Physical Review E, 68(6), p.061907.

    Google Scholar 

  35. Lee, B., Zhou, X., Riching, K., Eliceiri, K.W., Keely, P.J., Guelcher, S.A., Weaver, A.M. and Jiang, Y. (2014). A three-dimensional computational model of collagen network mechanics. PloS one, 9(11), p.e111896.

    Article  Google Scholar 

  36. Mogilner, A., Elston, T.C., Wang, H. and Oster, G. (2002). Molecular motors: theory. In Computational cell biology (pp. 320–353). Springer, New York, NY.

    Google Scholar 

  37. Lepzelter, D. and M.H. Zaman. (2014). Modeling persistence in mesenchymal cell motility using explicit fibers. Langmuir, 30(19): p. 5506–9.

    Article  Google Scholar 

  38. He, X. and Jiang, Y. (2017). Substrate curvature regulates cell migration. Physical biology, 14(3), p.035006.

    Article  MathSciNet  Google Scholar 

  39. He, X., Lee, B., Jiang, Y. (2016). Cell-ECM interactions in tumor invasion. In Systems Biology of Tumor Microenvironment (pp. 73–91). Springer, Cham.

    Book  Google Scholar 

  40. Silin, D. and T. Patzek. (2006). Pore space morphology analysis using maximal inscribed spheres. Physica A: Statistical Mechanics and its Applications, 371(2): p. 336–360

    Article  Google Scholar 

  41. Angermann, B.R., et al. (2012). Computational modeling of cellular signaling processes embedded into dynamic spatial contexts. Nature methods, 9(3): p. 283–9

    Article  Google Scholar 

  42. Loew, L.M. and J.C. Schaff. (2001). The Virtual Cell: a software environment for computational cell biology. Trends in biotechnology, 19(10): p. 401–6

    Article  Google Scholar 

  43. StochSS.http://www.stochss.org ( 2014)

  44. Madzvamuse, A., Maini, P.K. and Wathen, A.J. (2005). A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. Journal of Scientific Computing, 24(2), pp. 247–262.

    Article  MathSciNet  Google Scholar 

  45. Xing, J., Wang, H. and Oster, G. (2005). From continuum Fokker-Planck models to discrete kinetic models. Biophysical journal, 89(3), pp. 1551–1563.

    Article  Google Scholar 

  46. Baines, M. J. (1994). Moving Finite Elements, Monographs on Numerical Analysis, Clarendon, Press, Oxford.

    MATH  Google Scholar 

  47. Miller, K. and Miller, R.N. (1981). Moving finite elements. I. SIAM Journal on Numerical Analysis, 18(6), pp. 1019–1032.

    Article  MathSciNet  Google Scholar 

  48. Chen, B., Legand, W.R., Wang, K., et al., (2014). Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 6200.

    Google Scholar 

  49. Popov, K., Komianos, J. and Papoian, G.A. (2016). MEDYAN: mechanochemical simulations of contraction and polarity alignment in actomyosin networks. PLoS computational biology, 12(4), p.e1004877.

    Article  Google Scholar 

  50. Sung, B.H., Ketova, T., Hoshino, D., Zijlstra, A. and Weaver, A.M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature communications, 6, p.7164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, X., Jiang, Y. (2018). A Multiscale Model of Cell Migration in Three-Dimensional Extracellular Matrix. In: Stolarska, M., Tarfulea, N. (eds) Cell Movement. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96842-1_3

Download citation

Publish with us

Policies and ethics