Advertisement

The Environmental Impacts of Non-food Biomass Production Through Land-Use Changes: Scope, Foci and Methodology of Current Research

  • Benoît Gabrielle
  • Aude Barbottin
  • Julie Wohlfahrt
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 30)

Abstract

Biomass production has developed significantly in the latest decades to meet the growing needs of the bioeconomy sector, a trend which is expected to continue in the near future to substitute dwindling fossil resources. Concerns were recently raised on the consequences of expanding feedstock production on land-use worldwide, prompting a surge in scientific publications. These consequences may be analysed through a three-step causal chain relating drivers of feedstock production, changes in land-use (LUC), and environmental impacts such as greenhouse gas (GHG) emissions, biodiversity, water resources, soil quality, or atmospheric pollution. Here, we set out to examine how this booming area of research is currently structured in terms of foci, methodologies employed, or types of LUC studied. It appeared especially relevant since this research bears a degree of performativity in that it is likely to influence and shape policies in the realm of the emerging bioeconomy sector.

A qualitative analysis of the body of 236 articles selected through a systematic literature survey evidenced the following characteristics. There was a strong emphasis on 1G biofuels, and on lignocellulosic feedstocks in relation to 2G biofuels. Most of the LUC reported occurred in Europe and North America, and the region involved by indirect LUC was rarely specified. In terms of methods to work out the causal chain, the use of simple, ad’hoc calculations or statistics dominated except for impact assessment, where LCA was relied on very frequently. The use of economic modeling to predict LUC in response to various drivers was far from dominant, but tended to result in more conservative outcomes regarding the environmental benefits of bio-based products, in comparison with fossil-based value-chains.

Most studies focused on single products, feedstocks, or environmental impacts, and the connection with food/feed production was rarely addressed per se. The analysis of multi-functional systems, integrating non-food and food production and value-chains should be fostered, along with interactions between the various research communities currently seeking to address the LUC-mediated impacts of the bio-based economy.

Keywords

Biofuels Bioenergy Biomass Land-use change Direct Indirect Impact assessment Drivers. 

Notes

Acknowledgements

This work was funded by the French Environment and Energy Management Agency (ADEME) and the Ministry of Agriculture and Forestry under grant contract 12-60-C0004. Assistance from Sophie Le Perchec (INRA Rennes) in the literature search is acknowledged, as well as the following scientists who contributed to the detailed analysis of the scientific articles: Laure Bamière (INRA Grignon), Valentin Bellassen (INRA Dijon), Martial Bernoux (IRD Montpellier), Cécile Bessou (CIRAD Montpellier), Antonio Bispo (ADEME Angers), François Chiron (AgroParisTech, Orsay), Stéphane De Cara (INRA Grignon), Patrice Dumas (CIRAD Montpellier), Guillaume Décocq (Univ. Picardie Jules-Vernes, Amiens), Jean-François Dhôte (INRA Nancy), Monia El Akkari (INRA Paris), Nathalie Frascaria (AgroParisTech, Orsay), Sabrina Gaba (INRA Dijon), Philippe Lescoat (AgroParisTech, Paris), David Makowski (INRA Grignon), Olivier Réchauchère (INRA Paris).

The authors would also like to thank two anonymous readers for their insightful comments, which made it possible to improve the quality of this article.

Supplementary material

467539_1_En_3_MOESM1_ESM.xlsx (372 kb)
Gabrielle methods SM OK (XLSX 372 kb)

References

  1. Acquaye AA, Sherwen T, Genovese A, Kuylenstierna J, Koh SCL, McQueen-Mason S (2012) Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets. Renew Sustain Energy Rev 16(7):5414–5422.  https://doi.org/10.1016/j.rser.2012.04.046 CrossRefGoogle Scholar
  2. Bajzelj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nat Clim Chang 4(10):924–929.  https://doi.org/10.1038/nclimate2353 CrossRefGoogle Scholar
  3. Bamiere L, Bellassen V (this volume) Review of the impacts on greenhouse gas emissions of land-use changes induced by non-food biomass production. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  4. Ben Aoun W, Gabrielle B, Gagnepain B (2013) The importance of land use change in the environmental balance of biofuels. OCL 20(5):D505.  https://doi.org/10.1051/ocl/2013027 CrossRefGoogle Scholar
  5. Berndes G, Ahlgren S, Borjesson P, Cowie AL (2013) Bioenergy and land use change-state of the art. Wiley Interdiscip Rev-Energy Environ 2(3):282–303.  https://doi.org/10.1002/wene.41 CrossRefGoogle Scholar
  6. Bispo A (this volume) Review of the impacts on water of land-use changes induced by non-food biomass production. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  7. Brandt K, Glemnitz M (2014) Assessing the regional impacts of increased energy maize cultivation on farmland birds. Environ Monit Assess 186(2):679–697.  https://doi.org/10.1007/s10661-013-3407-9 CrossRefGoogle Scholar
  8. Bright RM, Cherubini F, Stromman AH (2012) Climate impacts of bioenergy: inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. Environ Impact Assess Rev 37:2–11.  https://doi.org/10.1016/j.eiar.2012.01.002 CrossRefGoogle Scholar
  9. Broch A, Hoekman SK, Unnasch S (2013) A review of variability in indirect land use change assessment and modeling in biofuel policy. Environ Sci Pol 29:147–157.  https://doi.org/10.1016/j.envsci.2013.02.002 CrossRefGoogle Scholar
  10. Brunelle T, Dumas P, Souty F, Dorin B, Nadaud F (2015) Evaluating the impact of rising fertilizer prices on crop yields. Agric Econ 46(5):653–666.  https://doi.org/10.1111/agec.12161 CrossRefGoogle Scholar
  11. Callon M (2008) Chapter 11: What does it mean to say that economics is performative? In: MacKenzie D, Muniesa F, Siu L (eds) Do economists make markets? On the performativity of economics. Princeton University Press, pp 311–357Google Scholar
  12. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Ribeiro S, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, Stechow Cv (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 209–332CrossRefGoogle Scholar
  13. Collet P, Lardon L, Helias A, Bricout S, Lombaert-Valot I, Perrier B, Lepine O, Steyer JP, Bernard O (2014) Biodiesel from microalgae – life cycle assessment and recommendations for potential improvements. Renew Energy 71:525–533.  https://doi.org/10.1016/j.renene.2014.06.009 CrossRefGoogle Scholar
  14. Dale BE, Bals BD, Kim S, Eranki P (2010) Biofuels done right: land efficient animal feeds enable large environmental and energy benefits. Environ Sci Technol 44(22):8385–8389.  https://doi.org/10.1021/es101864b CrossRefGoogle Scholar
  15. De Cara S, Goussebaïle A, Grateau R, Levert F, Quemener J, Vermont B, Bureau J-C, Gabrielle B, Gohin A, Bispo A (2012) Revue critique des études évaluant l’effet des changements d’affectation des sols sur les bilans environnementaux des biocarburants. Ademe, Angers:96Google Scholar
  16. DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3(3):178–181.  https://doi.org/10.1038/ngeo756 CrossRefGoogle Scholar
  17. Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. Int J Life Cycle Assess 9(3):161–171.  https://doi.org/10.1065/lca2004.03.148 CrossRefGoogle Scholar
  18. El Akkari M, Sandoval M, Le Perchec S, Réchauchère O (this volume) Textual analysis of published research articles on the environmental impacts of land-use change. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  19. Eranki PL, Dale BE (2011) Comparative life cycle assessment of centralized and distributed biomass processing systems combined with mixed feedstock landscapes. Glob Change Biol Bioenergy 3(6):427–438.  https://doi.org/10.1111/j.1757-1707.2011.01096.x CrossRefGoogle Scholar
  20. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508.  https://doi.org/10.1126/science.1121416 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Fialho RC, Zinn YL (2014) Changes in soil organic carbon under eucalyptus plantations in Brazil: a comparative analysis. Land Degrad Dev 25(5):428–437.  https://doi.org/10.1002/ldr.2158 CrossRefGoogle Scholar
  22. Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production – an overview. Biofuels Bioprod Biorefin-Biofpr 4(6):692–704.  https://doi.org/10.1002/bbb.258 CrossRefGoogle Scholar
  23. Gaba S (this volume) Review of the impacts on biodiversity of land-use changes induced by non-food biomass production. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  24. Garcia CA, Fuentes A, Hennecke A, Riegelhaupt E, Manzini F, Masera O (2011) Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energy 88(6):2088–2097.  https://doi.org/10.1016/j.apenergy.2010.12.072 CrossRefGoogle Scholar
  25. Gonzalez-Hernandez JL, Sarath G, Stein JM, Owens V, Gedye K, Boe A (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol-Plant 45(3):267–281.  https://doi.org/10.1007/s11627-009-9215-9 CrossRefGoogle Scholar
  26. Guo M, Richter GM, Holland RA, Eigenbrod F, Taylor G, Shah N (2016) Implementing land-use and ecosystem service effects into an integrated bioenergy value chain optimisation framework. Comput Chem Eng 91:392–406.  https://doi.org/10.1016/j.compchemeng.2016.02.011 CrossRefGoogle Scholar
  27. Haines-Young R, Potschin M (2010) The links between biodiversity, ecosystem services and human well-being. In: Raffaelli DG, Frid CL (eds) Ecosystem ecology: a new synthesis. Cambridge University Press/British Ecological Society, Cambridge, pp 110–139CrossRefGoogle Scholar
  28. Hamelin L, Naroznova I, Wenzel H (2014) Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl Energy 114:774–782.  https://doi.org/10.1016/j.apenergy.2013.09.033 CrossRefGoogle Scholar
  29. Hoque YM, Raj C, Hantush MM, Chaubey I, Govindaraju RS (2014) How do land-use and climate change affect watershed health? A scenario-based analysis. Water Qual Expos Health 6(1–2):19–33.  https://doi.org/10.1007/s12403-013-0102-6 CrossRefGoogle Scholar
  30. Kauffman NS, Hayes DJ (2013) The trade-off between bioenergy and emissions with land constraints. Energy Policy 54:300–310.  https://doi.org/10.1016/j.enpol.2012.11.036 CrossRefGoogle Scholar
  31. Kline KL, Msangi S, Dale VH, Woods J, Souza GM, Osseweijer P, Clancy JS, Hilbert JA, Johnson FX, McDonnell PC, Mugera HK (2017) Reconciling food security and bioenergy: priorities for action. Glob Change Biol Bioenergy 9(3):557–576.  https://doi.org/10.1111/gcbb.12366 CrossRefGoogle Scholar
  32. Kloverpris JH, Mueller S (2013) Baseline time accounting: considering global land use dynamics when estimating the climate impact of indirect land use change caused by biofuels. Int J Life Cycle Assess 18(2):319–330.  https://doi.org/10.1007/s11367-012-0488-6 CrossRefGoogle Scholar
  33. Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li XB, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skanes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu JC (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Chang-Hum Policy Dimens 11(4):261–269.  https://doi.org/10.1016/s0959-3780(01)00007-3 CrossRefGoogle Scholar
  34. Laurijssen J, Faaij APC (2009) Trading biomass or GHG emission credits? Clim Chang 94(3–4):287–317.  https://doi.org/10.1007/s10584-008-9517-7 CrossRefGoogle Scholar
  35. Liska AJ, Perrin RK (2009) Indirect land use emissions in the life cycle of biofuels: regulations vs science. Biofuels Bioprod Biorefin-Biofpr 3(3):318–328.  https://doi.org/10.1002/bbb.153 CrossRefGoogle Scholar
  36. Lotze-Campen H, von Lampe M, Kyle P, Fujimori S, Havlik P, van Meijl H, Hasegawa T, Popp A, Schmitz C, Tabeau A, Valin H, Willenbockel D, Wise M (2014) Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric Econ 45(1):103–116.  https://doi.org/10.1111/agec.12092 CrossRefGoogle Scholar
  37. Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plochl M, Berg W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy 37(1):277–284.  https://doi.org/10.1016/j.renene.2011.06.030 CrossRefGoogle Scholar
  38. Mosnier A, Havlik P, Valin H, Baker J, Murray B, Feng S, Obersteiner M, McCarl BA, Rose SK, Schneider UA (2013) Alternative US biofuel mandates and global GHG emissions: the role of land use change, crop management and yield growth. Energy Policy 57:602–614.  https://doi.org/10.1016/j.enpol.2013.02.035 CrossRefGoogle Scholar
  39. Newell JP, Vos RO (2011) “Papering” over space and place: product carbon footprint modeling in the global paper industry. Ann Assoc Am Geogr 101(4):730–741.  https://doi.org/10.1080/00045608.2011.567929 CrossRefGoogle Scholar
  40. Nguyen TLT, Hermansen JE (2012) System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Appl Energy 89(1):254–261.  https://doi.org/10.1016/j.apenergy.2011.07.023 CrossRefGoogle Scholar
  41. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489.  https://doi.org/10.1126/science.1114736 CrossRefGoogle Scholar
  42. Rasmussen LV, Rasmussen K, Bruun TB (2012) Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: a case study from Mozambique. Energy Policy 51:728–736.  https://doi.org/10.1016/j.enpol.2012.09.029 CrossRefGoogle Scholar
  43. Réchauchère O, El Akkari M, Le Perchec S, Makowski D, Gabrielle B, Bispo A (this volume) An innovative methodological framework for analyzing existing scientific research on land-use change and associated environmental impacts. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, ChamGoogle Scholar
  44. Romijn HA (2011) Land clearing and greenhouse gas emissions from Jatropha biofuels on African Miombo Woodlands. Energy Policy 39(10):5751–5762.  https://doi.org/10.1016/j.enpol.2010.07.041 CrossRefGoogle Scholar
  45. Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240.  https://doi.org/10.1126/science.1151861 CrossRefGoogle Scholar
  46. Seto KC, Kaufmann RK (2003) Modeling the drivers of urban land use change in the Pearl River Delta, China: integrating remote sensing with socioeconomic data. Land Econ 79(1):106–121.  https://doi.org/10.2307/3147108 CrossRefGoogle Scholar
  47. Silalertruksa T, Gheewala SH (2012) Environmental sustainability assessment of palm biodiesel production in Thailand. Energy 43(1):306–314.  https://doi.org/10.1016/j.energy.2012.04.025 CrossRefGoogle Scholar
  48. Slade R, Bauen A, Shah N (2009) The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnol Biofuels 2:15.  https://doi.org/10.1186/1754-6834-2-15 CrossRefPubMedGoogle Scholar
  49. Tidaker P, Sundberg C, Oborn I, Katterer T, Bergkvist G (2014) Rotational grass/clover for biogas integrated with grain production – a life cycle perspective. Agric Syst 129:133–141.  https://doi.org/10.1016/j.agsy.2014.05.015 CrossRefGoogle Scholar
  50. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677.  https://doi.org/10.1038/nature01014 CrossRefGoogle Scholar
  51. Turconi R, Tonini D, Nielsen CFB Simonsen CG, Astrup T (2014) Environmental impacts of future low-carbon electricity systems: detailed life cycle assessment of a Danish case study. Appl Energy 132:66–73.  https://doi.org/10.1016/j.apenergy.2014.06.078 CrossRefGoogle Scholar
  52. van Vliet J, Magliocca NR, Buchner B, Cook E, Benayas JMR, Ellis EC, Heinimann A, Keys E, Lee TM, Liu JG, Mertz O, Meyfroidt P, Moritz M, Poeplau C, Robinson BE, Seppelt R, Seto KC, Verburg PH (2016) Meta-studies in land use science: current coverage and prospects. Ambio 45(1):15–28.  https://doi.org/10.1007/s13280-015-0699-8 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Villamor GB, Le QB, Djanibekov U, van Noordwijk M, Vlek PLG (2014) Biodiversity in rubber agroforests, carbon emissions, and rural livelihoods: an agent-based model of land-use dynamics in lowland Sumatra. Environ Model Softw 61:151–165.  https://doi.org/10.1016/j.envsoft.2014.07.013 CrossRefGoogle Scholar
  54. Villoria NB, Hertel TW (2011) Geography matters: international trade patterns and the indirect land use effects of biofuels. Am J Agric Econ 93(4):919–935.  https://doi.org/10.1093/ajae/aar025 CrossRefGoogle Scholar
  55. Yeh S, Sperling D (2010) Low carbon fuel standards: implementation scenarios and challenges. Energy Policy 38(11):6955–6965.  https://doi.org/10.1016/j.enpol.2010.07.012 CrossRefGoogle Scholar

Appendix – References Used in the Literature Review

  1. Achten WMJ, Verchot LV (2011) Implications of biodiesel-induced land-use changes for CO2 emissions: case studies in tropical America, Africa, and Southeast Asia. Ecol Soc 16(4).  https://doi.org/10.5751/es-04403-160414
  2. Acquaye AA, Wiedmann T, Feng KS, Crawford RH, Barrett J, Kuylenstierna J, Duffy AP, Koh SCL, McQueen-Mason S (2011) Identification of ‘carbon hot-spots’ and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis. Environ Sci Technol 45(6):2471–2478.  https://doi.org/10.1021/es103410q CrossRefPubMedCentralPubMedGoogle Scholar
  3. Acquaye AA, Sherwen T, Genovese A, Kuylenstierna J, Koh SCL, McQueen-Mason S (2012) Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets. Renew Sustain Energy Rev 16(7):5414–5422.  https://doi.org/10.1016/j.rser.2012.04.046 CrossRefGoogle Scholar
  4. Alkemade R, van Oorschot M, Miles L, Nellemann C, Bakkenes M, ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12(3):374–390.  https://doi.org/10.1007/s10021-009-9229-5. CrossRefGoogle Scholar
  5. Alvarenga RAF, Dewulf J, De Meester S, Wathelet A, Villers J, Thommeret R, Hruska Z (2013) Life cycle assessment of bioethanol-based PVC. Part 2: consequential approach. Biofuels Bioprod Biorefin 7(4):396–405.  https://doi.org/10.1002/bbb.1398 CrossRefGoogle Scholar
  6. Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. Glob Change Biol Bioenergy 1(1):75–96.  https://doi.org/10.1111/j.1757-1707.2008.01001.x CrossRefGoogle Scholar
  7. Anderson-Teixeira KJ, Duval BD, Long SP, DeLucia EH (2012) Biofuels on the landscape: is “land sharing” preferable to “land sparing”? Ecol Appl 22(8):2035–2048.  https://doi.org/10.1890/12-0711.1 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Babel MS, Shrestha B, Perret SR (2011) Hydrological impact of biofuel production: a case study of the Khlong Phlo Watershed in Thailand. Agric Water Manag 101(1):8–26.  https://doi.org/10.1016/j.agwat.2011.08.019 CrossRefGoogle Scholar
  9. Bailis RE, Bake JE (2010) Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44(22):8684–8691.  https://doi.org/10.1021/es1019178 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Bailis R, McCarthy H (2011) Carbon impacts of direct land use change in semiarid woodlands converted to biofuel plantations in India and Brazil. Glob Change Biol Bioenergy 3(6):449–460.  https://doi.org/10.1111/j.1757-1707.2011.01100.x CrossRefGoogle Scholar
  11. Bandaru V, Izaurralde RC, Manowitz D, Link R, Zhang XS, Post WM (2013) Soil carbon change and net energy associated with biofuel production on marginal lands: a regional modeling perspective. J Environ Qual 42(6):1802–1814.  https://doi.org/10.2134/jeq2013.05.0171 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Baral H, Keenan RJ, Fox JC, Stork NE, Kasel S (2013) Spatial assessment of ecosystem goods and services in complex production landscapes: a case study from south-eastern Australia. Ecol Complex 13:35–45.  https://doi.org/10.1016/j.ecocom.2012.11.001 CrossRefGoogle Scholar
  13. Beckman J, Jones CA, Sands R (2011) A global general equilibrium analysis of biofuel mandates and greenhouse gas emissions. Am J Agric Econ 93(2):334–341.  https://doi.org/10.1093/ajae/aaq086 CrossRefGoogle Scholar
  14. Benanti G, Saunders M, Tobin B, Osborne B (2014) Contrasting impacts of afforestation on nitrous oxide and methane emissions. Agric For Meteorol 198:82–93.  https://doi.org/10.1016/j.agrformet.2014.07.014 CrossRefGoogle Scholar
  15. Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Glob Change Biol Bioenergy 3(4):299–312.  https://doi.org/10.1111/j.1757-1707.2010.01088.x CrossRefGoogle Scholar
  16. Bhardwaj AK, Zenone T, Jasrotia P, Robertson GP, Chen J, Hamilton SK (2011) Water and energy footprints of bioenergy crop production on marginal lands. Glob Change Biol Bioenergy 3(3):208–222.  https://doi.org/10.1111/j.1757-1707.2010.01074.x CrossRefGoogle Scholar
  17. Biggs R, Simons H, Bakkenes M, Scholes RJ, Eickhout B, van Vuuren D, Alkemade R (2008) Scenarios of biodiversity loss in southern Africa in the 21st century. Glob Environ Chang-Hum Policy Dimens 18(2):296–309.  https://doi.org/10.1016/j.gloenvcha.2008.02.001 CrossRefGoogle Scholar
  18. Bonner IJ, Muth DJ, Koch JB, Karlen DL (2014) Modeled impacts of cover crops and vegetative barriers on corn stover availability and soil quality. BioEnergy Res 7(2):576–589.  https://doi.org/10.1007/s12155-014-9423-y CrossRefGoogle Scholar
  19. Bottcher H, Frank S, Havlik P, Elbersen B (2013) Future GHG emissions more efficiently controlled by land-use policies than by bioenergy sustainability criteria. Biofuels Bioprod Biorefin 7(2):115–125.  https://doi.org/10.1002/bbb.1369 CrossRefGoogle Scholar
  20. Brandao M, Milà i Canals L, Clift R (2011) Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 35(6):2323–2336.  https://doi.org/10.1016/j.biombioe.2009.10.019 CrossRefGoogle Scholar
  21. Brandt K, Glemnitz M (2014) Assessing the regional impacts of increased energy maize cultivation on farmland birds. Environ Monit Assess 186(2):679–697.  https://doi.org/10.1007/s10661-013-3407-9 CrossRefGoogle Scholar
  22. Bright RM, Cherubini F, Stromman AH (2012) Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. Environ Impact Assess Rev 37:2–11.  https://doi.org/10.1016/j.eiar.2012.01.002 CrossRefGoogle Scholar
  23. Bringezu S, Schutz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt GA, Rettenmaier N (2009) Global implications of biomass and biofuel use in Germany – recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:S57–S68.  https://doi.org/10.1016/j.jclepro.2009.03.007 CrossRefGoogle Scholar
  24. Britz W, Hertel TW (2011) Impacts of EU biofuels directives on global markets and EU environmental quality: an integrated PE, global CGE analysis. Agric Ecosyst Environ 142(1–2):102–109.  https://doi.org/10.1016/j.agee.2009.11.003 CrossRefGoogle Scholar
  25. Brovkin V, Boysen L, Arora VK, Boisier JP, Cadule P, Chini L, Claussen M, Friedlingstein P, Gayler V, van den Hurk B, Hurtt GC, Jones CD, Kato E, de Noblet-Ducoudre N, Pacifico F, Pongratz J, Weiss M (2013) Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J Clim 26(18):6859–6881.  https://doi.org/10.1175/jcli-d-12-00623.1 CrossRefGoogle Scholar
  26. Cai XM, Zhang XA, Wang DB (2011) Land availability for biofuel production. Environ Sci Technol 45(1):334–339.  https://doi.org/10.1021/es103338e CrossRefGoogle Scholar
  27. Calder IR, Nisbet T, Harrison JA (2009) An evaluation of the impacts of energy tree plantations on water resources in the United Kingdom under present and future UKCIP02 climate scenarios. Water Resour Res 45.  https://doi.org/10.1029/2007wr006657
  28. Campbell JE, Block E (2010) Land-use and alternative bioenergy pathways for waste biomass. Environ Sci Technol 44(22):8665–8669.  https://doi.org/10.1021/es100681g CrossRefPubMedCentralPubMedGoogle Scholar
  29. Caputo J, Balogh SB, Volk TA, Johnson L, Puettmann M, Lippke B, Oneil E (2014) Incorporating uncertainty into a life cycle assessment (LCA) model of short-rotation willow biomass (Salix spp.) crops. BioEnergy Res 7(1):48–59.  https://doi.org/10.1007/s12155-013-9347-y CrossRefGoogle Scholar
  30. Casado MR, Mead A, Burgess PJ, Howard DC, Butler SJ (2014) Predicting the impacts of bioenergy production on farmland birds. Sci Total Environ 476:7–19.  https://doi.org/10.1016/j.scitotenv.2013.12.080 CrossRefGoogle Scholar
  31. Castanheira EG, Grisoli R, Freire F, Pecora V, Coelho ST (2014) Environmental sustainability of biodiesel in Brazil. Energy Policy 65:680–691.  https://doi.org/10.1016/j.enpol.2013.09.062 CrossRefGoogle Scholar
  32. Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18(3):647–658.  https://doi.org/10.1007/s11367-012-0465-0 CrossRefGoogle Scholar
  33. Chamberlain JF, Miller SA, Frederick JR (2011) Using DAYCENT to quantify on-farm GHG emissions and N dynamics of land use conversion to N-managed switchgrass in the Southern U.S. Agric Ecosyst Environ 141(3–4):332–341.  https://doi.org/10.1016/j.agee.2011.03.011 CrossRefGoogle Scholar
  34. Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems – a LCA case study. Appl Energy 87(1):47–57.  https://doi.org/10.1016/j.apenergy.2009.08.024 CrossRefGoogle Scholar
  35. Clark CM, Lin Y, Bierwagen BG, Eaton LM, Langholtz MH, Morefield PE, Ridley CE, Vimmerstedt L, Peterson S, Bush BW (2013) Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program. Environ Res Lett 8(2).  https://doi.org/10.1088/1748-9326/8/2/025016 CrossRefGoogle Scholar
  36. Cobuloglu HI, Buyuktahtakin IE (2014) A mixed-integer optimization model for the economic and environmental analysis of biomass production. Biomass Bioenerg 67:8–23.  https://doi.org/10.1016/j.biombioe.2014.03.025 CrossRefGoogle Scholar
  37. Cocco D, Deligios PA, Ledda L, Sulas L, Virdis A, Carboni G (2014) LCA study of oleaginous bioenergy chains in a mediterranean environment. Energies 7(10):6258–6281.  https://doi.org/10.3390/en7106258 CrossRefGoogle Scholar
  38. Dalgaard T, Olesen JE, Petersen SO, Petersen BM, Jorgensen U, Kristensen T, Hutchings NJ, Gyldenkaerne S, Hermansen JE (2011) Developments in greenhouse gas emissions and net energy use in Danish agriculture – how to achieve substantial CO2 reductions? Environ Pollut 159(11):3193–3203.  https://doi.org/10.1016/j.envpol.2011.02.024 CrossRefGoogle Scholar
  39. Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10(2):69–74.  https://doi.org/10.1890/110003 CrossRefGoogle Scholar
  40. Daystar J, Gonzalez R, Reeb C, Venditti R, Treasure T, Abt R, Kelley S (2014) Economics, environmental impacts, and supply chain analysis of cellulosic biomass for biofuels in the southern US: pine, eucalyptus, unmanaged hardwoods, forest residues, switchgrass, and sweet sorghum. Bioresources 9(1):393–444Google Scholar
  41. de Gorter H, Tsur Y (2010) Cost-benefit tests for GHG emissions from biofuel production. Eur Rev Agric Econ 37(2):133–145.  https://doi.org/10.1093/erae/jbq014 CrossRefGoogle Scholar
  42. De Jong BHJ, Tipper R, Montoya-Gomez G (2000) An economic analysis of the potential for carbon sequestration by forests: evidence from southern Mexico. Ecol Econ 33(2):313–327.  https://doi.org/10.1016/s0921-8009(99)00162-7 CrossRefGoogle Scholar
  43. de Souza SP, Pacca S, de Avila MT, Borges JLB (2010) Greenhouse gas emissions and energy balance of palm oil biofuel. Renew Energy 35(11):2552–2561.  https://doi.org/10.1016/j.renene.2010.03.028 CrossRefGoogle Scholar
  44. Death RG, Baillie B, Fransen P (2003) Effect of Pinus radiata logging on stream invertebrate communities in Hawke’s bay, New Zealand. N Z J Mar Freshw Res 37(3):507–520.  https://doi.org/10.1080/00288330.2003.9517185 CrossRefGoogle Scholar
  45. Debnath D, Stoecker AL, Epplin FM (2014) Impact of environmental values on the breakeven price of switchgrass. Biomass Bioenerg 70:184–195.  https://doi.org/10.1016/j.biombioe.2014.08.021 CrossRefGoogle Scholar
  46. Debolt S, Campbell JE, Smith R, Montross M, Stork J (2009) Life cycle assessment of native plants and marginal lands for bioenergy agriculture in Kentucky as a model for south-eastern USA. Glob Change Biol Bioenergy 1(4):308–316.  https://doi.org/10.1111/j.1757-1707.2009.01023.x CrossRefGoogle Scholar
  47. Delivand MK, Gnansounou E (2013) Life cycle environmental impacts of a prospective palm-based biorefinery in Para State-Brazil. Bioresour Technol 150:438–446.  https://doi.org/10.1016/j.biortech.2013.07.100 CrossRefPubMedCentralPubMedGoogle Scholar
  48. Djomo SN, El Kasmioui O, De Groote T, Broeckx LS, Verlinden MS, Berhongaray G, Fichot R, Zona D, Dillen SY, King JS, Janssens IA, Ceulemans R (2013) Energy and climate benefits of bioelectricity from low-input short rotation woody crops on agricultural land over a two-year rotation. Appl Energy 111:862–870.  https://doi.org/10.1016/j.apenergy.2013.05.017 CrossRefGoogle Scholar
  49. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc Natl Acad Sci U S A 105(11):4513–4518.  https://doi.org/10.1073/pnas.0708300105 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Dumortier J, Hayes DJ, Carriquiry M, Dong FX, Du XD, Elobeid A, Fabiosa JF, Tokgoz S (2011) Sensitivity of carbon emission estimates from indirect land-use change. Appl Econ Perspect Policy 33(3):428–448.  https://doi.org/10.1093/aepp/ppr015 CrossRefGoogle Scholar
  51. Dunin FX, Smith CJ, Denmead OT (2007) Hydrological change: reaping prosperity and pain in Australia. Hydrol Earth Syst Sci 11(1):77–95.  https://doi.org/10.5194/hess-11-77-2007 CrossRefGoogle Scholar
  52. Dunn JB, Mueller S, Kwon HY, Wang MQ (2013) Land-use change and greenhouse gas emissions from corn and cellulosic ethanol. Biotechnol Biofuels 6.  https://doi.org/10.1186/1754-6834-6-51 CrossRefPubMedGoogle Scholar
  53. Egeskog A, Freitas F, Berndes G, Sparouek G, Wirsenius S (2014) Greenhouse gas balances and land use changes associated with the planned expansion (to 2020) of the sugarcane ethanol industry in Sao Paulo, Brazil. Biomass Bioenerg 63:280–290.  https://doi.org/10.1016/j.biombioe.2014.01.030 CrossRefGoogle Scholar
  54. Eggers J, Troltzsch K, Falcucci A, Maiorano L, Verburg PH, Framstad E, Louette G, Maes D, Nagy S, Ozinga WA, Delbaere B (2009) Is biofuel policy harming biodiversity in Europe? Glob Change Biol Bioenergy 1(1):18–34.  https://doi.org/10.1111/j.1757-1707.2009.01002.x CrossRefGoogle Scholar
  55. Einheuser MD, Nejadhashemi AP, Woznicki SA (2013) Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass Bioenerg 58:198–209.  https://doi.org/10.1016/j.biombioe.2013.08.025 CrossRefGoogle Scholar
  56. Elbersen BS, Annevelink E, Klein-Lankhorst JR, Lesschen JP, Staritsky I, Langeveld JWA, Elbersen HW, Sanders JPM (2014) A framework with an integrated computer support tool to assess regional biomass delivery chains. Reg Envir Chang 14(3):967–980.  https://doi.org/10.1007/s10113-014-0584-1 CrossRefGoogle Scholar
  57. Elliott J, Sharma B, Best N, Glotter M, Dunn JB, Foster I, Miguez F, Mueller S, Wang M (2014) A spatial modeling framework to evaluate domestic biofuel-induced potential land use changes and emissions. Environ Sci Technol 48(4):2488–2496.  https://doi.org/10.1021/es404546r CrossRefPubMedCentralPubMedGoogle Scholar
  58. Engel J, Huth A, Frank K (2012) Bioenergy production and Skylark (Alauda arvensis) population abundance – a modelling approach for the analysis of land-use change impacts and conservation options. Glob Change Biol Bioenergy 4(6):713–727.  https://doi.org/10.1111/j.1757-1707.2012.01170.x CrossRefGoogle Scholar
  59. Ericsson N, Porso C, Ahlgren S, Nordberg A, Sundberg C, Hansson PA (2013) Time-dependent climate impact of a bioenergy system – methodology development and application to Swedish conditions. Glob Change Biol Bioenergy 5(5):580–590.  https://doi.org/10.1111/gcbb.12031 CrossRefGoogle Scholar
  60. Falano T, Jeswani HK, Azapagic A (2014) Assessing the environmental sustainability of ethanol from integrated biorefineries. Biotechnol J 9(6):753–765.  https://doi.org/10.1002/biot.201300246 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Fialho RC, Zinn YL (2014) Changes in soil organic carbon under eucalyptus plantations in Brazil: a comparative analysis. Land Degrad Dev 25(5):428–437.  https://doi.org/10.1002/ldr.2158 CrossRefGoogle Scholar
  62. Fiorentino G, Ripa M, Mellino S, Fahd S, Ulgiati S (2014) Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals. J Clean Prod 66:174–187.  https://doi.org/10.1016/j.jclepro.2013.11.043 CrossRefGoogle Scholar
  63. Fiorese G, Guariso G (2010) A GIS-based approach to evaluate biomass potential from energy crops at regional scale. Environ Model Softw 25(6):702–711.  https://doi.org/10.1016/j.envsoft.2009.11.008 CrossRefGoogle Scholar
  64. Firbank LG (2008) Assessing the ecological impacts of bioenergy projects. Bioenergy Res 1(1):12–19.  https://doi.org/10.1007/s12155-007-9000-8 CrossRefGoogle Scholar
  65. Gabrielle B, Gagnaire N, Massad RS, Dufosse K, Bessou C (2014) Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling. Bioresour Technol 152:511–518.  https://doi.org/10.1016/j.biortech.2013.10.104 CrossRefPubMedCentralPubMedGoogle Scholar
  66. Garcia CA, Manzini F (2012) Environmental and economic feasibility of sugarcane ethanol for the Mexican transport sector. Sol Energy 86(4):1063–1069.  https://doi.org/10.1016/j.solener.2011.09.015 CrossRefGoogle Scholar
  67. Garcia CA, Fuentes A, Hennecke A, Riegelhaupt E, Manzini F, Masera O (2011) Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energy 88(6):2088–2097.  https://doi.org/10.1016/j.apenergy.2010.12.072 CrossRefGoogle Scholar
  68. Garcia-Quijano JF, Deckmyn G, Moons E, Proost S, Ceulemans R, Muys B (2005) An integrated decision support framework for the prediction and evaluation of efficiency, environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: description and case studies. For Ecol Manag 207(1–2):245–262.  https://doi.org/10.1016/j.foreco.2004.10.030 CrossRefGoogle Scholar
  69. Gelfand I, Zenone T, Jasrotia P, Chen JQ, Hamilton SK, Robertson GP (2011) Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc Natl Acad Sci U S A 108(33):13,864–13,869.  https://doi.org/10.1073/pnas.1017277108 CrossRefGoogle Scholar
  70. Gelfand I, Sahajpal R, Zhang XS, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493(7433):514–517.  https://doi.org/10.1038/nature11811 CrossRefPubMedCentralPubMedGoogle Scholar
  71. Geoghegan J, Lawrence D, Schneider LC, Tully K (2010) Accounting for carbon stocks in models of land-use change: an application to Southern Yucatan. Reg Envir Chang 10(3):247–260.  https://doi.org/10.1007/s10113-010-0111-y CrossRefGoogle Scholar
  72. Georgescu M, Lobell DB, Field CB (2011) Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci U S A 108(11):4307–4312.  https://doi.org/10.1073/pnas.1008779108 CrossRefPubMedCentralPubMedGoogle Scholar
  73. Geyer R, Lindner JP, Stoms DM, Davis FW, Wittstock B (2010) Coupling GIS and LCA for biodiversity assessments of land use. Int J Life Cycle Assess 15(7):692–703.  https://doi.org/10.1007/s11367-010-0199-9 CrossRefGoogle Scholar
  74. Gohin A (2014) Assessing the land use changes and greenhouse gas emissions of biofuels: elucidating the crop yield effects. Land Econ 90(4):575–586.  https://doi.org/10.3368/le.90.4.575 CrossRefGoogle Scholar
  75. Goldstein JC, Tarhule A, Brauer D (2014) Simulating the hydrologic response of a semiarid watershed to switchgrass cultivation. Hydrol Res 45(1):99–114.  https://doi.org/10.2166/nh.2013.163 CrossRefGoogle Scholar
  76. Gonzalez-Hernandez JL, Sarath G, Stein JM, Owens V, Gedye K, Boe A (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol-Plant 45(3):267–281.  https://doi.org/10.1007/s11627-009-9215-9 CrossRefGoogle Scholar
  77. Gopalakrishnan G, Negri MC, Wang M, Wu M, Snyder SW, Lafreniere L (2009) Biofuels, land, and water: a systems approach to sustainability. Environ Sci Technol 43(15):6094–6100.  https://doi.org/10.1021/es900801u CrossRefPubMedCentralPubMedGoogle Scholar
  78. Hallgren W, Schlosser CA, Monier E, Kicklighter D, Sokolov A, Melillo J (2013) Climate impacts of a large-scale biofuels expansion. Geophys Res Lett 40(8):1624–1630.  https://doi.org/10.1002/grl.50352 CrossRefGoogle Scholar
  79. Hamelin L, Naroznova I, Wenzel H (2014) Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl Energy 114:774–782.  https://doi.org/10.1016/j.apenergy.2013.09.033 CrossRefGoogle Scholar
  80. Hansen A, Meyer-Aurich A, Prochnow A (2013) Greenhouse gas mitigation potential of a second generation energy production system from short rotation poplar in Eastern Germany and its accompanied uncertainties. Biomass Bioenerg 56, 104–115. DOI:  https://doi.org/10.1016/j.biombioe.2013.05.004.CrossRefGoogle Scholar
  81. Harvolk S, Kornatz P, Otte A, Simmering D (2014) Using existing landscape data to assess the ecological potential of Miscanthus cultivation in a marginal landscape. Glob Change Biol Bioenergy 6(3):227–241.  https://doi.org/10.1111/gcbb.12078 CrossRefGoogle Scholar
  82. Hassan MNA, Jaramillo P, Griffin WM (2011) Life cycle GHG emissions from Malaysian oil palm bioenergy development: the impact on transportation sector’s energy security. Energy Policy 39(5):2615–2625.  https://doi.org/10.1016/j.enpol.2011.02.030 CrossRefGoogle Scholar
  83. Haughton AJ, Bond AJ, Lovett AA, Dockerty T, Sunnenberg G, Clark SJ, Bohan DA, Sage RB, Mallott MD, Mallott VE, Cunningham MD, Riche AB, Shield IF, Finch JW, Turner MM, Karp A (2009) A novel, integrated approach to assessing social, economic and environmental implications of changing rural land-use: a case study of perennial biomass crops. J Appl Ecol 46(2):315–322.  https://doi.org/10.1111/j.1365-2664.2009.01623.x CrossRefGoogle Scholar
  84. Havlik P, Schneider UA, Schmid E, Bottcher H, Fritz S, Skalsky R, Aoki K, De Cara S, Kindermann G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Global land-use implications of first and second generation biofuel targets. Energy Policy 39(10):5690–5702.  https://doi.org/10.1016/j.enpol.2010.03.030 CrossRefGoogle Scholar
  85. Helin T, Holma A, Soimakallio S (2014) Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy. Int J Life Cycle Assess 19(4):770–785.  https://doi.org/10.1007/s11367-014-0706-5 CrossRefGoogle Scholar
  86. Hellebrand HJ, Strahle M, Scholz V, Kern J (2010) Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutr Cycl Agroecosyst 87(2):175–186.  https://doi.org/10.1007/s10705-009-9326-z CrossRefGoogle Scholar
  87. Hellmann F, Verburg PH (2010) Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manag 91(6):1389–1396.  https://doi.org/10.1016/j.jenvman.2010.02.022 CrossRefGoogle Scholar
  88. Helming K, Diehl K, Kuhlman T, Jansson T, Verburg PH, Bakker M, Perez-Soba M, Jones L, Verkerk PJ, Tabbush P, Morris JB, Drillet Z, Farrington J, LeMouel P, Zagame P, Stuczynski T, Siebielec G, Sieber S, Wiggering H (2011) Ex ante impact assessment of policies affecting land use. Part B: Application of the analytical framework. Ecol Soc 16(1)Google Scholar
  89. Hernandes TAD, Bufon VB, Seabra JEA (2014) Water footprint of biofuels in Brazil: assessing regional differences. Biofuels Bioprod Biorefin 8(2):241–252.  https://doi.org/10.1002/bbb.1454 CrossRefGoogle Scholar
  90. Hertel TW, Golub AA, Jones AD, O’Hare M, Plevin RJ, Kammen DM (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60(3):223–231.  https://doi.org/10.1525/bio.2010.60.3.8 CrossRefGoogle Scholar
  91. Hertel T, Steinbuks J, Baldos U (2013) Competition for land in the global bioeconomy. Agric Econ 44:129–138.  https://doi.org/10.1111/agec.12057 CrossRefGoogle Scholar
  92. Hickman GC, Vanloocke A, Dohleman FG, Bernacchi CJ (2010) A comparison of canopy evapotranspiration for maize and two perennial grasses identified as potential bioenergy crops. Glob Change Biol Bioenergy 2(4):157–168.  https://doi.org/10.1111/j.1757-1707.2010.01050.x CrossRefGoogle Scholar
  93. Hillier J, Whittaker C, Dailey G, Aylott M, Casella E, Richter GM, Riche A, Murphy R, Taylor G, Smith P (2009) Greenhouse gas emissions from four bioenergy crops in England and Wales: integrating spatial estimates of yield and soil carbon balance in life cycle analyses. Glob Change Biol Bioenergy 1(4):267–281.  https://doi.org/10.1111/j.1757-1707.2009.01021.x CrossRefGoogle Scholar
  94. Hoefnagels R, Smeets E, Faaij A (2010) Greenhouse gas footprints of different biofuel production systems. Renew Sustain Energy Rev 14(7):1661–1694.  https://doi.org/10.1016/j.rser.2010.02.014 CrossRefGoogle Scholar
  95. Holma A, Koponen K, Antikainen R, Lardon L, Leskinen P, Roux P (2013) Current limits of life cycle assessment framework in evaluating environmental sustainability – case of two evolving biofuel technologies. J Clean Prod 54:215–228.  https://doi.org/10.1016/j.jclepro.2013.04.032 CrossRefGoogle Scholar
  96. Hoque YM, Raj C, Hantush MM, Chaubey I, Govindaraju RS (2014) How do land-use and climate change affect watershed health? A scenario-based analysis. Water Qual Expos Health 6(1–2):19–33.  https://doi.org/10.1007/s12403-013-0102-6 CrossRefGoogle Scholar
  97. Iriarte A, Villalobos P (2013) Greenhouse gas emissions and energy balance of sunflower biodiesel: identification of its key factors in the supply chain. Resour Conserv Recycl 73:46–52.  https://doi.org/10.1016/j.resconrec.2013.01.014 CrossRefGoogle Scholar
  98. Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J Clean Prod 18(4):336–345.  https://doi.org/10.1016/j.jclepro.2009.11.004 CrossRefGoogle Scholar
  99. Iriarte A, Rieradevall J, Gabarrell X (2012) Transition towards a more environmentally sustainable biodiesel in South America: the case of Chile. Appl Energy 91(1):263–273.  https://doi.org/10.1016/j.apenergy.2011.09.024 CrossRefGoogle Scholar
  100. Kauffman NS, Hayes DJ (2013) The trade-off between bioenergy and emissions with land constraints. Energy Policy 54:300–310.  https://doi.org/10.1016/j.enpol.2012.11.036 CrossRefGoogle Scholar
  101. Kauffman N, Dumortier J, Hayes DJ, Brown RC, Laird DA (2014) Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass Bioenerg 63:167–176.  https://doi.org/10.1016/j.biombioe.2014.01.049 CrossRefGoogle Scholar
  102. Kim H, Kim S, Dale BE (2009) Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43(3):961–967.  https://doi.org/10.1021/es802681k CrossRefPubMedCentralPubMedGoogle Scholar
  103. Kloverpris JH, Mueller S (2013) Baseline time accounting: considering global land use dynamics when estimating the climate impact of indirect land use change caused by biofuels. Int J Life Cycle Assess 18(2):319–330.  https://doi.org/10.1007/s11367-012-0488-6 CrossRefGoogle Scholar
  104. Krohn BJ, Fripp M (2012) A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA. Appl Energy 92:92–98.  https://doi.org/10.1016/j.apenergy.2011.10.025 CrossRefGoogle Scholar
  105. LaBeau MB, Robertson DM, Mayer AS, Pijanowski BC, Saad DA (2014) Effects of future urban and biofuel crop expansions on the riverine export of phosphorus to the Laurentian Great Lakes. Ecol Model 277:27–37.  https://doi.org/10.1016/j.ecolmodel.2014.01.016 CrossRefGoogle Scholar
  106. Lange M (2011) The GHG balance of biofuels taking into account land use change. Energy Policy 39(5):2373–2385.  https://doi.org/10.1016/j.enpol.2011.01.057 CrossRefGoogle Scholar
  107. Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci U S A 107(8):3388–3393.  https://doi.org/10.1073/pnas.0907318107 CrossRefPubMedCentralPubMedGoogle Scholar
  108. Larsen RK, Jiwan N, Rompas A, Jenito J, Osbeck M, Tarigan A (2014) Towards ‘hybrid accountability’ in EU biofuels policy? Community grievances and competing water claims in the Central Kalimantan oil palm sector. Geoforum 54:295–305.  https://doi.org/10.1016/j.geoforum.2013.09.010 CrossRefGoogle Scholar
  109. Latta GS, Baker JS, Beach RH, Rose SK, McCarl BA (2013) A multi-sector intertemporal optimization approach to assess the GHG implications of US forest and agricultural biomass electricity expansion. J For Econ 19(4):361–383.  https://doi.org/10.1016/j.jfe.2013.05.003 CrossRefGoogle Scholar
  110. Laurijssen J, Faaij APC (2009) Trading biomass or GHG emission credits? Clim Chang 94(3–4):287–317.  https://doi.org/10.1007/s10584-008-9517-7 CrossRefGoogle Scholar
  111. Le LT, van Ierland EC, Zhu XQ, Wesseler J (2013) Energy and greenhouse gas balances of cassava-based ethanol. Biomass Bioenerg 51:125–135.  https://doi.org/10.1016/j.biombioe.2013.01.011 CrossRefGoogle Scholar
  112. Leal M, Nogueira LAH, Cortez LAB (2013) Land demand for ethanol production. Appl Energy 102:266–271.  https://doi.org/10.1016/j.apenergy.2012.09.037 CrossRefGoogle Scholar
  113. Lechon Y, Cabal H, Saez R (2011) Life cycle greenhouse gas emissions impacts of the adoption of the EU Directive on biofuels in Spain. Effect of the import of raw materials and land use changes. Biomass Bioenerg 35(6):2374–2384.  https://doi.org/10.1016/j.biombioe.2011.01.036 CrossRefGoogle Scholar
  114. Levasseur A, Lesage P, Margni M, Brandao M, Samson R (2012) Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches. Clim Change 115(3–4):759–776.  https://doi.org/10.1007/s10584-012-0473-x CrossRefGoogle Scholar
  115. Lindborg R, Stenseke M, Cousins SAO, Bengtsson J, Berg A, Gustafsson T, Sjodin NE, Eriksson O (2009) Investigating biodiversity trajectories using scenarios – Lessons from two contrasting agricultural landscapes. J Environ Manag 91(2):499–508.  https://doi.org/10.1016/j.jenvman.2009.09.018 CrossRefGoogle Scholar
  116. Liptow C, Tillman AM (2012) A comparative life cycle assessment study of polyethylene based on sugarcane and crude oil. J Ind Ecol 16(3):420–435.  https://doi.org/10.1111/j.1530-9290.2011.00405.x CrossRefGoogle Scholar
  117. Lisboa CC, Butterbach-Bahl K, Mauder M, Kiese R (2011) Bioethanol production from sugarcane and emissions of greenhouse gases – known and unknowns. Glob Change Biol Bioenergy 3(4):277–292.  https://doi.org/10.1111/j.1757-1707.2011.01095.x CrossRefGoogle Scholar
  118. Liu L, Zhuang DF, Jiang D, Fu JY (2013) Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China. Biomass Bioenerg 56:342–350.  https://doi.org/10.1016/j.biombioe.2013.05.030 CrossRefGoogle Scholar
  119. Liu TT, McConkey B, Huffman T, Smith S, MacGregor B, Yemshanov D, Kulshreshtha S (2014) Potential and impacts of renewable energy production from agricultural biomass in Canada. Appl Energy 130:222–229.  https://doi.org/10.1016/j.apenergy.2014.05.044 CrossRefGoogle Scholar
  120. Loarie SR, Lobell DB, Asner GP, Mu QZ, Field CB (2011) Direct impacts on local climate of sugar-cane expansion in Brazil. Nat Clim Chang 1(2):105–109.  https://doi.org/10.1038/nclimate1067 CrossRefGoogle Scholar
  121. Louette G, Maes D, Alkemade JRM, Boitani L, de Knegt B, Eggers J, Falcucci A, Framstad E, Hagemeijer W, Hennekens SM, Maiorano L, Nagy S, Serradilla AN, Ozinga WA, Schaminee JHJ, Tsiaousi V, van Tol S, Delbaere B (2010) BioScore-Cost-effective assessment of policy impact on biodiversity. J Nat Conserv 18(2):142–148.  https://doi.org/10.1016/j.jnc.2009.08.002 CrossRefGoogle Scholar
  122. Lusiana B, van Noordwijk M, Cadisch G (2012) Land sparing or sharing? Exploring livestock fodder options in combination with land use zoning and consequences for livelihoods and net carbon stocks using the FALLOW model. Agric Ecosyst Environ 159:145–160.  https://doi.org/10.1016/j.agee.2012.07.006 CrossRefGoogle Scholar
  123. Lutolf M, Bolliger J, Kienast F, Guisan A (2009) Scenario-based assessment of future land use change on butterfly species distributions. Biodivers Conserv 18(5):1329–1347.  https://doi.org/10.1007/s10531-008-9541-y CrossRefGoogle Scholar
  124. Malca J, Freire F (2012) Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol. Energy 45(1):519–527.  https://doi.org/10.1016/j.energy.2012.02.070 CrossRefGoogle Scholar
  125. Mata TM, Martins AA, Sikdar SK, Costa CAV (2011) Sustainability considerations of biodiesel based on supply chain analysis. Clean Technol Environ Policy 13(5):655–671.  https://doi.org/10.1007/s10098-010-0346-9 CrossRefGoogle Scholar
  126. Mathews JA, Tan H (2009) Biofuels and indirect land use change effects: the debate continues. Biofuels Bioprod Biorefin 3(3):305–317.  https://doi.org/10.1002/bbb.147 CrossRefGoogle Scholar
  127. Mello FFC, Cerri CEP, Davies CA, Holbrook NM, Paustian K, Maia SMF, Galdos MV, Bernoux M, Cerri CC (2014) Payback time for soil carbon and sugar-cane ethanol. Nat Clim Chang 4(7):605–609.  https://doi.org/10.1038/nclimate2239 CrossRefGoogle Scholar
  128. Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plochl M, Berg W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy 37(1):277–284.  https://doi.org/10.1016/j.renene.2011.06.030 CrossRefGoogle Scholar
  129. Michelsen O, Cherubini F, Stromman AH (2012) Impact assessment of biodiversity and carbon pools from land use and land use changes in life cycle assessment, exemplified with forestry operations in Norway. J Ind Ecol 16(2):231–242.  https://doi.org/10.1111/j.1530-9290.2011.00409.x CrossRefGoogle Scholar
  130. Michetti M, Rosa R (2012) Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis. Ecol Econ 77:139–148.  https://doi.org/10.1016/j.ecolecon.2012.02.020 CrossRefGoogle Scholar
  131. Mishra U, Torn MS, Fingerman K (2013) Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon. Glob Change Biol Bioenergy 5(4):391–399.  https://doi.org/10.1111/j.1757-1707.2012.01201.x CrossRefGoogle Scholar
  132. Mosnaim A (2001) Estimating CO2 abatement and sequestration potentials for Chile. Energy Policy 29(8):631–640.  https://doi.org/10.1016/s0301-4215(00)00160-9 CrossRefGoogle Scholar
  133. Mosnier A, Havlik P, Valin H, Baker J, Murray B, Feng S, Obersteiner M, McCarl BA, Rose SK, Schneider UA (2013) Alternative US biofuel mandates and global GHG emissions: the role of land use change, crop management and yield growth. Energy Policy 57:602–614.  https://doi.org/10.1016/j.enpol.2013.02.035 CrossRefGoogle Scholar
  134. Mulia R, Widayati A, Suyanto PA, Zulkarnain MT (2014) Low carbon emission development strategies for Jambi, Indonesia: simulation and trade-off analysis using the FALLOW model. Mitig Adapt Strateg Glob Chang 19(6):773–788.  https://doi.org/10.1007/s11027-013-9485-8 CrossRefGoogle Scholar
  135. Mullins KA, Griffin WM, Matthews HS (2011) Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels. Environ Sci Technol 45(1):132–138.  https://doi.org/10.1021/es1024993 CrossRefPubMedCentralPubMedGoogle Scholar
  136. Munoz I, Flury K, Jungbluth N, Rigarlsford G, Milà i Canals L, King H (2014) Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. Int J Life Cycle Assess 19(1):109–119.  https://doi.org/10.1007/s11367-013-0613-1 CrossRefGoogle Scholar
  137. Murdiyarso D, Van Noordwijk M, Wasrin UR, Tomich TP, Gillison AN (2002) Environmental benefits and sustainable land-use options in the Jambi transect, Sumatra. J Veg Sci 13(3):429–438.  https://doi.org/10.1111/j.1654-1103.2002.tb02067.x CrossRefGoogle Scholar
  138. Nasterlack T, von Blottnitz H, Wynberg R (2014) Are biofuel concerns globally relevant? Prospects for a proposed pioneer bioethanol project in South Africa. Energy Sustain Dev 23:1–14.  https://doi.org/10.1016/j.esd.2014.06.005 CrossRefGoogle Scholar
  139. Nelson E, Sander H, Hawthorne P, Conte M, Ennaanay D, Wolny S, Manson S, Polasky S (2010) Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. Plos One 5(12):e14327.  https://doi.org/10.1371/journal.pone.0014327 CrossRefPubMedCentralPubMedGoogle Scholar
  140. Newell JP, Vos RO (2011) “Papering” over space and place: product carbon footprint modeling in the global paper industry. Ann Assoc Am Geogr 101(4):730–741.  https://doi.org/10.1080/00045608.2011.567929 CrossRefGoogle Scholar
  141. Ng TL, Eheart JW, Cai XM, Miguez F (2010) Modeling miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44(18):7138–7144.  https://doi.org/10.1021/es9039677 CrossRefGoogle Scholar
  142. Nguyen TLT, Hermansen JE (2012) System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Appl Energy 89(1):254–261.  https://doi.org/10.1016/j.apenergy.2011.07.023 CrossRefGoogle Scholar
  143. Nichols E, Uriarte M, Bunker DE, Favila ME, Slade EM, Vulinec K, Larsen T, Vaz-de-Mello FZ, Louzada J, Naeem S, Spector SH (2013) Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology 94(1):180–189.  https://doi.org/10.1890/12-0251.1 CrossRefGoogle Scholar
  144. Nikiema P, Rothstein DE, Miller RO (2012) Initial greenhouse gas emissions and nitrogen leaching losses associated with converting pastureland to short-rotation woody bioenergy crops in northern Michigan, USA. Biomass Bioenerg 39:413–426.  https://doi.org/10.1016/j.biombioe.2012.01.037 CrossRefGoogle Scholar
  145. Nock CA, Paquette A, Follett M, Nowak DJ, Messier C (2013) Effects of urbanization on tree species functional diversity in eastern North America. Ecosystems 16(8):1487–1497.  https://doi.org/10.1007/s10021-013-9697-5 CrossRefGoogle Scholar
  146. Nuissl H, Haase D, Lanzendorf M, Wittmer H (2009) Environmental impact assessment of urban land use transitions-A context-sensitive approach. Land Use Policy 26(2):414–424.  https://doi.org/10.1016/j.landusepol.2008.05.006 CrossRefGoogle Scholar
  147. Overmars KP, Stehfest E, Ros JPM, Prins AG (2011) Indirect land use change emissions related to EU biofuel consumption: an analysis based on historical data. Environ Sci Policy 14(3):248–257.  https://doi.org/10.1016/j.envsci.2010.12.012 CrossRefGoogle Scholar
  148. Pacca S, Moreira JR (2009) Historical carbon budget of the brazilian ethanol program. Energy Policy 37(11):4863–4873.  https://doi.org/10.1016/j.enpol.2009.06.072 CrossRefGoogle Scholar
  149. Palmer MM, Forrester JA, Rothstein DE, Mladenoff DJ (2014) Establishment phase greenhouse gas emissions in short rotation woody biomass plantations in the Northern Lake States, USA. Biomass Bioenerg 62:26–36.  https://doi.org/10.1016/j.biombioe.2014.01.021 CrossRefGoogle Scholar
  150. Panichelli L, Gnansounou E (2008) Estimating greenhouse gas emissions from indirect land-use change in biofuels production: concepts and exploratory analysis for soybean-based biodiesel. J Sci Ind Res 67(11):1017–1030Google Scholar
  151. Panichelli L, Dauriat A, Gnansounou E (2009) Life cycle assessment of soybean-based biodiesel in Argentina for export. Int J Life Cycle Assess 14(2):144–159.  https://doi.org/10.1007/s11367-008-0050-8 CrossRefGoogle Scholar
  152. Peh KSH, Balmford A, Field RH, Lamb A, Birch JC, Bradbury RB, Brown C, Butchart SHM, Lester M, Morrison R, Sedgwick I, Soans C, Stattersfield AJ, Stroh PA, Swetnam RD, Thomas DHL, Walpole M, Warrington S, Hughes FMR (2014) Benefits and costs of ecological restoration: rapid assessment of changing ecosystem service values at a UK wetland. Ecol Evol 4(20):3875–3886.  https://doi.org/10.1002/ece3.1248 CrossRefPubMedCentralPubMedGoogle Scholar
  153. Perez-Cruzado C, Mohren GMJ, Merino A, Rodriguez-Soalleiro R (2012) Carbon balance for different management practices for fast growing tree species planted on former pastureland in southern Europe: a case study using the CO(2)Fix model. Eur J For Res 131(6):1695–1716.  https://doi.org/10.1007/s10342-012-0609-6 CrossRefGoogle Scholar
  154. Pineiro G, Jobbagy EG, Baker J, Murray BC, Jackson RB (2009) Set-asides can be better climate investment than corn ethanol. Ecol Appl 19(2):277–282.  https://doi.org/10.1890/08-0645.1 CrossRefPubMedCentralPubMedGoogle Scholar
  155. Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44(21):8015–8021.  https://doi.org/10.1021/es101946t CrossRefPubMedCentralPubMedGoogle Scholar
  156. Popp A, Krause M, Dietrich JP, Lotze-Campen H, Leimbach M, Beringer T, Bauer N (2012) Additional CO2 emissions from land use change – Forest conservation as a precondition for sustainable production of second generation bioenergy. Ecol Econ 74:64–70.  https://doi.org/10.1016/j.ecolecon.2011.11.004 CrossRefGoogle Scholar
  157. Pradhan A, Shrestha DS, Van Gerpen J, McAloon A, Yee W, Haas M, Duffield JA (2012) Reassessment of life cycle greenhouse gas emissions for soybean biodiesel. Trans ASABE 55(6):2257–2264.  https://doi.org/10.13031/2013.42483 CrossRefGoogle Scholar
  158. Qin ZC, Zhuang QL, Chen M (2012) Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural yield, in the conterminous United States. Glob Change Biol Bioenergy 4(3):277–288.  https://doi.org/10.1111/j.1757-1707.2011.01129.x CrossRefGoogle Scholar
  159. Rajagopal D, Plevin RJ (2013) Implications of market-mediated emissions and uncertainty for biofuel policies. Energy Policy 56:75–82.  https://doi.org/10.1016/j.enpol.2012.09.076 CrossRefGoogle Scholar
  160. Rasmussen LV, Rasmussen K, Birch-Thomsen T, Kristensen SBP, Traore O (2012) The effect of cassava-based bioethanol production on above-ground carbon stocks: a case study from Southern Mali. Energy Policy 41:575–583.  https://doi.org/10.1016/j.enpol.2011.11.019 CrossRefGoogle Scholar
  161. Rasmussen LV, Rasmussen K, Bruun TB (2012) Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: a case study from Mozambique. Energy Policy 51:728–736.  https://doi.org/10.1016/j.enpol.2012.09.029 CrossRefGoogle Scholar
  162. Read P (1998) Dynamic interaction of short rotations and conventional forestry in meeting demand for bioenergy in the least cost mitigation strategy. Biomass Bioenerg 15(1):7–15.  https://doi.org/10.1016/s0961-9534(98)00029-4. CrossRefGoogle Scholar
  163. Reilly J, Melillo J, Cai YX, Kicklighter D, Gurgel A, Paltsev S, Cronin T, Sokolov A, Schlosser A (2012) Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environ Sci Technol 46(11):5672–5679.  https://doi.org/10.1021/es2034729 CrossRefPubMedCentralPubMedGoogle Scholar
  164. Reinhard J, Zah R (2011) Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass Bioenerg 35(6):2361–2373.  https://doi.org/10.1016/j.biombioe.2010.12.011 CrossRefGoogle Scholar
  165. Rescia AJ, Schmitz MF, Deagar PM, Depablo CL, Atauri JA, Pineda FD (1994) Influence of landscape complexity and land management on woody plant diversity in northern Spain. J Veg Sci 5(4):505–516.  https://doi.org/10.2307/3235977 CrossRefGoogle Scholar
  166. Rittenhouse CD, Rissman AR (2012) Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use change scenarios. Environ Sci Policy 21:94–105.  https://doi.org/10.1016/j.envsci.2012.04.006 CrossRefGoogle Scholar
  167. Romijn HA (2011) Land clearing and greenhouse gas emissions from Jatropha biofuels on African Miombo Woodlands. Energy Policy 39(10):5751–5762.  https://doi.org/10.1016/j.enpol.2010.07.041 CrossRefGoogle Scholar
  168. Saikkonen L, Ikainen M, Lankoski J (2014) Imported palm oil for biofuels in the EU: profitability, greenhouse gas emissions and social welfare effects. Biomass Bioenerg 68:7–23.  https://doi.org/10.1016/j.biombioe.2014.05.029 CrossRefGoogle Scholar
  169. Sanchez JAG, Martinez JML, Martin JL, Holgado MNF (2012) Comparison of Life Cycle energy consumption and GHG emissions of natural gas, biodiesel and diesel buses of the Madrid transportation system. Energy 47(1):174–198.  https://doi.org/10.1016/j.energy.2012.09.052 CrossRefGoogle Scholar
  170. Sanscartier D, Deen B, Dias G, MacLean HL, Dadfar H, McDonald I, Kludze H (2014) Implications of land class and environmental factors on life cycle GHG emissions of Miscanthus as a bioenergy feedstock. Glob Change Biol Bioenergy 6(4):401–413.  https://doi.org/10.1111/gcbb.12062 CrossRefGoogle Scholar
  171. Sarkar S, Miller SA (2014) Water quality impacts of converting intensively-managed agricultural lands to switchgrass. Biomass Bioenerg 68:32–43.  https://doi.org/10.1016/j.biombioe.2014.05.026 CrossRefGoogle Scholar
  172. Sauerbrei R, Ekschmitt K, Wolters V, Gottschalk TK (2014) Increased energy maize production reduces farmland bird diversity. Glob Change Biol Bioenergy 6(3):265–274.  https://doi.org/10.1111/gcbb.12146 CrossRefGoogle Scholar
  173. Saurette DD, Chang SX, Thomas BR (2008) Land-use conversion effects on CO(2) emissions: from agricultural to hybrid poplar plantation. Ecol Res 23(3):623–633.  https://doi.org/10.1007/s11284-007-0420-x CrossRefGoogle Scholar
  174. Schmidt J, Gass V, Schmid E (2011) Land use changes, greenhouse gas emissions and fossil fuel substitution of biofuels compared to bioelectricity production for electric cars in Austria. Biomass Bioenerg 35(9):4060–4074.  https://doi.org/10.1016/j.biombioe.2011.07.007 CrossRefGoogle Scholar
  175. Schwaiger HP, Bird DN (2010) Integration of albedo effects caused by land use change into the climate balance: should we still account in greenhouse gas units? For Ecol Manag 260(3):278–286.  https://doi.org/10.1016/j.foreco.2009.12.002 CrossRefGoogle Scholar
  176. Schwietzke S, Griffin WM, Matthews HS (2011) Relevance of emissions timing in biofuel greenhouse gases and climate impacts. Environ Sci Technol 45(19):8197–8203.  https://doi.org/10.1021/es2016236 CrossRefPubMedCentralPubMedGoogle Scholar
  177. Scown CD, Nazaroff WW, Mishra U, Strogen B, Lobscheid AB, Masanet E, Santero NJ, Horvath A, McKone TE (2012) Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environ Res Lett 7(1).  https://doi.org/10.1088/1748-9326/7/1/014011 CrossRefGoogle Scholar
  178. Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240.  https://doi.org/10.1126/science.1151861 CrossRefGoogle Scholar
  179. Secchi S, Gassman PW, Jha M, Kurkalova L, Kling CL (2011) Potential water quality changes due to corn expansion in the Upper Mississippi River Basin. Ecol Appl 21(4):1068–1084.  https://doi.org/10.1890/09-0619.1 CrossRefGoogle Scholar
  180. Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy 29(3):382–392.  https://doi.org/10.1002/ep.10461 CrossRefGoogle Scholar
  181. Siangjaeo S, Gheewala SH, Unnanon K, Chidthaisong A (2011) Implications of land use change on the life cycle greenhouse gas emissions from palm biodiesel production in Thailand. Energy Sustain Dev 15(1):1–7.  https://doi.org/10.1016/j.esd.2011.01.002 CrossRefGoogle Scholar
  182. Silalertruksa T, Gheewala SH (2011a) Long-term bioethanol system and its implications on GHG emissions: a case study of Thailand. Environ Sci Technol 45(11):4920–4928.  https://doi.org/10.1021/es1040915 CrossRefPubMedCentralPubMedGoogle Scholar
  183. Silalertruksa T, Gheewala SH (2011b) The environmental and socio-economic impacts of bio-ethanol production in Thailand. In: 9th eco-energy and materials science and engineering symposium 9.  https://doi.org/10.1016/j.egypro.2011.09.005 CrossRefGoogle Scholar
  184. Silalertruksa T, Gheewala SH (2012) Food, fuel, and climate change is palm-based biodiesel a sustainable option for Thailand? J Ind Ecol 16(4):541–551.  https://doi.org/10.1111/j.1530-9290.2012.00521.x CrossRefGoogle Scholar
  185. Silalertruksa T, Gheewala SH (2012) Environmental sustainability assessment of palm biodiesel production in Thailand. Energy 43(1):306–314.  https://doi.org/10.1016/j.energy.2012.04.025 CrossRefGoogle Scholar
  186. Silalertruksa T, Gheewala SH, Sagisaka M (2009) Impacts of Thai bio-ethanol policy target on land use and greenhouse gas emissions. Appl Energy 86:S170–S177.  https://doi.org/10.1016/j.apenergy.2009.05.010 CrossRefGoogle Scholar
  187. Slade R, Bauen A, Shah N (2009) The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe. Biotechnol Biofuels 2:15.  https://doi.org/10.1186/1754-6834-2-15 CrossRefPubMedGoogle Scholar
  188. Smeets EMW, Faaij APC (2010) The impact of sustainability criteria on the costs and potentials of bioenergy production – applied for case studies in Brazil and Ukraine. Biomass Bioenerg 34(3):319–333.  https://doi.org/10.1016/j.biombioe.2009.11.003 CrossRefGoogle Scholar
  189. Smith LJ, Torn MS (2013) Ecological limits to terrestrial biological carbon dioxide removal. Clim Change 118(1):89–103.  https://doi.org/10.1007/s10584-012-0682-3 CrossRefGoogle Scholar
  190. Smyth BM, Murphy JD (2011) The indirect effects of biofuels and what to do about them: the case of grass biomethane and its impact on livestock. Biofuels Bioprod Biorefin 5(2):165–184.  https://doi.org/10.1002/bbb.276 CrossRefGoogle Scholar
  191. Smyth BM, Murphy JD, O’Brien CM (2009) What is the energy balance of grass biomethane in Ireland and other temperate northern European climates? Renew Sustain Energy Rev 13(9):2349–2360.  https://doi.org/10.1016/j.rser.2009.04.003 CrossRefGoogle Scholar
  192. Solomon D, Lehmann J, Zech W (2001) Land use effects on amino sugar signature of chromic Luvisol in the semi-arid part of northern Tanzania. Biol Fertil Soils 33(1):33–40.  https://doi.org/10.1007/s003740000287 CrossRefGoogle Scholar
  193. Souza SP, de Avila MT, Pacca S (2012) Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production. Biomass Bioenerg 44:70–79.  https://doi.org/10.1016/j.biombioe.2012.04.018 CrossRefGoogle Scholar
  194. Sparovek G, Berndes G, Egeskog A, de Freitas FLM, Gustafsson S, Hansson J (2007) Sugarcane ethanol production in Brazil: an expansion model sensitive to socioeconomic and environmental concerns. Biofuels Bioprod Biorefin 1(4):270–282.  https://doi.org/10.1002/bbb.31 CrossRefGoogle Scholar
  195. Sparovek G, Barretto A, Berndes G, Martins S, Maule R (2009) Environmental, land-use and economic implications of Brazilian sugarcane expansion 1996–2006. Mitig Adapt Strateg Glob Chang 14(3):285–298.  https://doi.org/10.1007/s11027-008-9164-3 CrossRefGoogle Scholar
  196. Spatari S, MacLean HL (2010) Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels. Environ Sci Technol 44(22):8773–8780.  https://doi.org/10.1021/es102091a CrossRefPubMedCentralPubMedGoogle Scholar
  197. Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. J Appl Ecol 50(2):335–344.  https://doi.org/10.1111/1365-2664.12060 CrossRefGoogle Scholar
  198. Sturmer B, Schmidt J, Schmid E, Sinabell F (2013) Implications of agricultural bioenergy crop production in a land constrained economy – the example of Austria. Land Use Policy 30(1):570–581.  https://doi.org/10.1016/j.landusepol.2012.04.020 CrossRefGoogle Scholar
  199. Styles D, Jones MB (2008a) Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland. Environ Sci Policy 11(4):294–306.  https://doi.org/10.1016/j.envsci.2008.01.004 CrossRefGoogle Scholar
  200. Styles D, Jones MB (2008b) Miscanthus and willow heat production – an effective land-use strategy for greenhouse gas emission avoidance in Ireland? Energy Policy 36(1):97–107.  https://doi.org/10.1016/j.enpol.2007.08.030 CrossRefGoogle Scholar
  201. Suwanmanee U, Varabuntoonvit V, Chaiwutthinan P, Tajan M, Mungcharoen T, Leejarkpai T (2013) Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int J Life Cycle Assess 18(2):401–417.  https://doi.org/10.1007/s11367-012-0479-7 CrossRefGoogle Scholar
  202. Taheripour F, Hertel TW, Tyner WE, Beckman JF, Birur DK (2010) Biofuels and their by-products: global economic and environmental implications. Biomass Bioenerg 34(3):278–289.  https://doi.org/10.1016/j.biombioe.2009.10.017 CrossRefGoogle Scholar
  203. Teixido AL, Quintanilla LG, Carreno F, Gutierrez D (2010) Impacts of changes in land use and fragmentation patterns on Atlantic coastal forests in northern Spain. J Environ Manag 91(4):879–886.  https://doi.org/10.1016/j.jenvman.2009.11.004 CrossRefGoogle Scholar
  204. Tidaker P, Sundberg C, Oborn I, Katterer T, Bergkvist G (2014) Rotational grass/clover for biogas integrated with grain production – a life cycle perspective. Agric Syst 129:133–141.  https://doi.org/10.1016/j.agsy.2014.05.015 CrossRefGoogle Scholar
  205. Tonini D, Hamelin L, Wenzel H, Astrup T (2012a) Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. Environ Sci Technol 46(24):13,521–13,530.  https://doi.org/10.1021/es3024435 CrossRefGoogle Scholar
  206. Tonini D, Hamelin L, Wenzel H, Astrup T (2012b) Global warming potential impact of bioenergy systems. In: McEvoy A (ed) 2nd European Energy conference. E D P Sciences, Cedex ACrossRefGoogle Scholar
  207. Tsao CC, Campbell JE, Mena-Carrasco M, Spak SN, Carmichael GR, Chen Y (2012) Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels. Environ Sci Technol 46(19):10,835–10,841.  https://doi.org/10.1021/es301851x CrossRefGoogle Scholar
  208. Tseng YK (2012) The economical and environmental advantages of growing Jatropha curcas on marginal land. In: Xu QJ, Ge HH, Zhang JX (eds) Natural resources and sustainable development, Pts 1–3. Trans Tech Publications Ltd., Stafa-Zurich, pp 1495–1498Google Scholar
  209. Turconi R, Tonini D, Nielsen CFB Simonsen CG, Astrup T (2014) Environmental impacts of future low-carbon electricity systems: detailed life cycle assessment of a Danish case study. Appl Energy 132:66–73.  https://doi.org/10.1016/j.apenergy.2014.06.078 CrossRefGoogle Scholar
  210. Uusitalo V, Havukainen J, Kapustina V, Soukka R, Horttanainen M (2014a) Greenhouse gas emissions of biomethane for transport: uncertainties and allocation methods. Energy Fuels 28(3):1901–1910.  https://doi.org/10.1021/ef4021685 CrossRefGoogle Scholar
  211. Uusitalo V, Vaisanen S, Havukainen J, Havukainen M, Soukka R, Luoranen M (2014b) Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil. Renew Energy 69(O International Organization for Standards, 2006, EN ISO 14040):103–113.  https://doi.org/10.1016/j.renene.2014.03.020 CrossRefGoogle Scholar
  212. van Dam J, Faaij APC, Hilbert J, Petruzzi H, Turkenburg WC (2009) Large-scale bioenergy production from soybeans and switchgrass in Argentina Part B. Environmental and socio-economic impacts on a regional level. Renew Sustain Energy Rev 13(8):1679–1709.  https://doi.org/10.1016/j.rser.2009.03.012 CrossRefGoogle Scholar
  213. van der Hilst F, Lesschen JP, van Dam JMC, Riksen M, Verweij PA, Sanders JPM, Faaij APC (2012) Spatial variation of environmental impacts of regional biomass chains. Renew Sustain Energy Rev 16(4):2053–2069.  https://doi.org/10.1016/j.rser.2012.01.027 CrossRefGoogle Scholar
  214. van der Hilst F, Verstegen JA, Zheliezna T, Drozdova O, Faaij APC (2014) Integrated spatiotemporal modelling of bioenergy production potentials, agricultural land use, and related GHG balances; demonstrated for Ukraine. Biofuels Bioprod Biorefin 8(3):391–411.  https://doi.org/10.1002/bbb.1471 CrossRefGoogle Scholar
  215. Vanloocke A, Bernacchi CJ, Twine TE (2010) The impacts of Miscanthus x giganteus production on the Midwest US hydrologic cycle. Glob Change Biol Bioenergy 2(4):180–191.  https://doi.org/10.1111/j.1757-1707.2010.01053.x CrossRefGoogle Scholar
  216. Vasquez-Leon M, Liverman D (2004) The political ecology of land-use change: affluent ranchers and destitute farmers in the Mexican municipio of Alamos. Hum Organ 63(1):21–33.  https://doi.org/10.17730/humo.63.1.urh0lujh3ea9gy7n CrossRefGoogle Scholar
  217. Vazquez-Rowe I, Marvuglia A, Flammang K, Braun C, Leopold U, Benetto E (2014) The use of temporal dynamics for the automatic calculation of land use impacts in LCA using R programming environment. Int J Life Cycle Assess 19(3):500–516.  https://doi.org/10.1007/s11367-013-0669-y CrossRefGoogle Scholar
  218. Viglizzo EF, Frank FC, Carreno LV, Jobbagy EG, Pereyra H, Clatt J, Pincen D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Change Biol 17(2):959–973.  https://doi.org/10.1111/j.1365-2486.2010.02293.x CrossRefGoogle Scholar
  219. Villamor GB, Le QB, Djanibekov U, van Noordwijk M, Vlek PLG (2014) Biodiversity in rubber agroforests, carbon emissions, and rural livelihoods: an agent-based model of land-use dynamics in lowland Sumatra. Environ Model Softw 61:151–165.  https://doi.org/10.1016/j.envsoft.2014.07.013 CrossRefGoogle Scholar
  220. Villoria NB, Hertel TW (2011) Geography matters: international trade patterns and the indirect land use effects of biofuels. Am J Agric Econ 93(4):919–935.  https://doi.org/10.1093/ajae/aar025 CrossRefGoogle Scholar
  221. Walter A, Dolzan P, Quilodran O, de Oliveira JG, da Silva C, Piacente F, Segerstedt A (2011) Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects. Energy Policy 39(10):5703–5716.  https://doi.org/10.1016/j.enpol.2010.07.043 CrossRefGoogle Scholar
  222. Wang MQ, Han J, Haq Z, Tyner WE, Wu M, Elgowainy A (2011) Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass Bioenerg 35(5):1885–1896.  https://doi.org/10.1016/j.biombioe.2011.01.028 CrossRefGoogle Scholar
  223. Wang M, Han J, Dunn JB, Cai H, Elgowainy A (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7(4).  https://doi.org/10.1088/1748-9326/7/4/045905 CrossRefGoogle Scholar
  224. Weightman RM, Cottrill BR, Wiltshire JJJ, Kindred DR, Sylvester-Bradley R (2011) Opportunities for avoidance of land-use change through substitution of soya bean meal and cereals in European livestock diets with bioethanol coproducts. Glob Change Biol Bioenergy 3(2):158–170.  https://doi.org/10.1111/j.1757-1707.2010.01066.x CrossRefGoogle Scholar
  225. Wicke B, Dornburg V, Junginger M, Faaij A (2008) Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass Bioenerg 32(12):1322–1337.  https://doi.org/10.1016/j.biombioe.2008.04.001 CrossRefGoogle Scholar
  226. Wise M, Dooley J, Luckow P, Calvin K, Kyle P (2014) Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century. Appl Energy 114:763–773.  https://doi.org/10.1016/j.apenergy.2013.08.042 CrossRefGoogle Scholar
  227. Wu M, Demissie Y, Yan E (2012) Simulated impact of future biofuel production on water quality and water cycle dynamics in the Upper Mississippi river basin. Biomass Bioenerg 41:44–56.  https://doi.org/10.1016/j.biombioe.2012.01.030 CrossRefGoogle Scholar
  228. Yeh S, Sperling D (2010) Low carbon fuel standards: implementation scenarios and challenges. Energy Policy 38(11):6955–6965.  https://doi.org/10.1016/j.enpol.2010.07.012 CrossRefGoogle Scholar
  229. Yu Y, Wu HW (2010) Bioslurry as a fuel. 2. Life-cycle energy and carbon footprints of bioslurry fuels from mallee biomass in Western Australia. Energy Fuels 24:5660–5668.  https://doi.org/10.1021/ef100957a CrossRefGoogle Scholar
  230. Yui SK, Yeh S (2013) Land use change emissions from oil palm expansion in Para, Brazil depend on proper policy enforcement on deforested lands. Environ Res Lett 8(4):044031.  https://doi.org/10.1088/1748-9326/8/4/044031 CrossRefGoogle Scholar
  231. Zenone T, Gelfand I, Chen JQ, Hamilton SK, Robertson GP (2013) From set-aside grassland to annual and perennial cellulosic biofuel crops: effects of land use change on carbon balance. Agric For Meteorol 182:1–12.  https://doi.org/10.1016/j.agrformet.2013.07.015 CrossRefGoogle Scholar
  232. Zhang X, Izaurralde RC, Manowitz D, West TO, Post WM, Thomson AM, Bandaruw VP, Nichols J, Williams JR (2010) An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems. Glob Change Biol Bioenergy 2(5):258–277.  https://doi.org/10.1111/j.1757-1707.2010.01046.x CrossRefGoogle Scholar
  233. Zhao X, Monnell JD, Niblick B, Rovensky CD, Landis AE (2014) The viability of biofuel production on urban marginal land: an analysis of metal contaminants and energy balance for Pittsburgh’s Sunflower Gardens. Landsc Urban Plan 124:22–33.  https://doi.org/10.1016/j.landurbplan.2013.12.015 CrossRefGoogle Scholar
  234. Zimmermann J, Dondini M, Jones MB (2013) Assessing the impacts of the establishment of Miscanthus on soil organic carbon on two contrasting land-use types in Ireland. Eur J Soil Sci 64(6):747–756.  https://doi.org/10.1111/ejss.12087 CrossRefGoogle Scholar
  235. Ziolkowska JR (2013) Evaluating sustainability of biofuels feedstocks: a multi-objective framework for supporting decision making. Biomass Bioenerg 59:425–440.  https://doi.org/10.1016/j.biombioe.2013.09.008 CrossRefGoogle Scholar
  236. Zona D, Janssens IA, Aubinet M, Gioli B, Vicca S, Fichot R, Ceulemans R (2013) Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land. Agric For Meteorol 169:100–110.  https://doi.org/10.1016/j.agrformet.2012.10.008 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Benoît Gabrielle
    • 1
  • Aude Barbottin
    • 2
  • Julie Wohlfahrt
    • 3
  1. 1.EcoSysAgroParisTech – INRAThiverval-GrignonFrance
  2. 2.SAD-APTINRAThiverval-GrignonFrance
  3. 3.ASTERINRAMirecourtFrance

Personalised recommendations