Skip to main content

Multiscale Modeling of Interfaces, Dislocations, and Dislocation Field Plasticity

  • Chapter
  • First Online:
Mesoscale Models

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 587))

Abstract

The various scales of hierarchical structures of metallic materials range from nm to mm. The notion of crystalline plasticity modeling is generalized to a set of model constructs that address phenomena associated with evolution of dislocations in crystals across a range of corresponding length scales, with time scales ranging from fs to years. These model constructs include coarse-grained atomistic modeling (atomistics), microscopic phase field models, dislocation field models, discrete dislocation dynamics, statistical continuum dislocation models, and mesoscale generalized continuum models of gradient, micropolar or micromorphic type, as well as local continuum crystal plasticity that can be applied to polycrystals. We identify key phenomena of lattice dislocations and discuss how these are mapped onto the capabilities of various scale-specific model constructs. Concurrent and hierarchical multiscale model transitions in space and time are discussed, distinguishing between coarse-graining and spatial domain decomposition approaches for lower scale models. We focus on model order reduction methods for mesoscale to macroscale constructs. In terms of bridging scales, the practical importance of two-scale transitions between models of differing fidelity and/or resolution is emphasized, whether of concurrent or hierarchical nature. Various scale-specific models for crystalline plasticity are considered, along with examples. The chapter closes by summarizing some of the long-standing gaps in modeling dislocation plasticity in crystals and polycrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • R.K. Abu Al-Rub, G.Z. Voyiadjis, D.J. Bammann, A thermodynamic based higher-order gradient theory for size dependent plasticity. Int. J. Solids Struct. 44(9), 2888–2923 (2007)

    Article  MATH  Google Scholar 

  • A. Acharya, A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids 49, 761–784 (2001)

    Article  MATH  Google Scholar 

  • A. Acharya, Driving forces and boundary conditions in continuum dislocation mechanics. Proc. R. Soc. Lond. A 459, 1343–1363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Acharya, Microcanonical entropy and mesoscale dislocation mechanics and plasticity. J. Elast. 104, 23–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Acharya, A. Roy, A. Sawant, Continuum theory and methods for coarse-grained, mesoscopic plasticity. Scr. Mater. 54, 705–710 (2006)

    Article  Google Scholar 

  • A. Acharya, A.J. Beaudoin, R. Miller, New perspectives in plasticity theory: dislocation nucleation, waves and partial continuity of the plastic strain rate. Math. Mech. Solids 13(3–4), 292–315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Akarapu, H.M. Zbib, D.F. Bahr, Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression. Int. J. Plast. 16, 239–257 (2010)

    Article  MATH  Google Scholar 

  • C. Alleman, D.J. Luscher, C. Bronkhorst, S. Ghosh, Distribution-enhanced homogenization framework for heterogeneous elasto-plastic problems. J. Mech. Phys. Solids 85, 2015 (2015)

    Article  MathSciNet  Google Scholar 

  • J.S. Amelang, G.N. Venturini, D.M. Kochmann, Microstructure evolution during nanoindentation by the quasicontinuum method. Proc. Appl. Math. Mech. 13, 553–556 (2013)

    Article  Google Scholar 

  • J.S. Amelang, G.N. Venturini, D.M. Kochmann, Summation rules for a fully nonlocal energy-based quasicontinuum method. J. Mech. Phys. Solids 82, 378–413 (2015)

    Article  MathSciNet  Google Scholar 

  • R.J. Amodeo, N.M. Ghoniem, A review of experimental-observations and theoretical-models of dislocation cells and subgrains. Res. Mech. 23(2–3), 137–160 (1988)

    Google Scholar 

  • R.J. Amodeo, N.M. Ghoniem, Dislocation dynamics. I. A proposed methodology for micromechanics. Phys. Rev. B 41, 6958 (1990)

    Article  Google Scholar 

  • M. Ardeljan, I.J. Beyerlein, M. Knezevic, Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling. Int. J. Plast. 99, 81–101 (2017)

    Article  Google Scholar 

  • A. Arsenlis, D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47(5), 1597–1611 (1999)

    Article  Google Scholar 

  • A. Arsenlis, D.M. Parks, Modeling the evolution of crystallographic dislocation density in crystal plasticity. J. Mech. Phys. Solids 50, 1979–2009 (2002)

    Article  MATH  Google Scholar 

  • A. Arsenlis, B.D. Wirth, M. Rhee, Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos. Mag. 84(34), 3617–3635 (2004)

    Article  Google Scholar 

  • A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, V.V. Bulatov, Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng. 15, 553–595 (2007)

    Article  Google Scholar 

  • R.J. Asaro, Crystal plasticity. ASME J. Appl. Mech. 50, 921–934 (1983a)

    Article  MATH  Google Scholar 

  • R.J. Asaro, Micromechanics of crystals and polycrystals. Adv. Appl. Mech. 23, 1–115 (1983b)

    Article  Google Scholar 

  • M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)

    Article  Google Scholar 

  • H. Askari, M.R. Maughan, N. Abdolrahim, D. Sagapuram, D.F. Bahr, H.M. Zbib, A stochastic crystal plasticity framework for deformation of micro-scale polycrystalline materials. Int. J. Plast. 68, 21–33 (2015)

    Article  Google Scholar 

  • O. Aslan, N.M. Cordero, A. Gaubert, S. Forest, Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • R.A. Austin, D.L. McDowell, A viscoplastic constitutive model for polycrystalline FCC metals at very high rates of deformation. Int. J. Plast. 27(1), 1–24 (2011)

    Article  Google Scholar 

  • R.A. Austin, D.L. McDowell, Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel and aluminum. Int. J. Plast. 32–33, 134–154 (2012)

    Article  Google Scholar 

  • K.L. Baker, W.A. Curtin, Multiscale diffusion method for simulations of long-time defect evolution with application to dislocation climb. J. Mech. Phys. Solids 92, 297–312 (2016)

    Article  Google Scholar 

  • D.J. Bammann, E.C. Aifantis, On a proposal for a continuum with microstructure. Acta Mech. 45, 91–121 (1982)

    Article  MATH  Google Scholar 

  • D.J. Bammann, E.C. Aifantis, A model for finite-deformation plasticity. Acta Mech. 69, 97–117 (1987)

    Article  MATH  Google Scholar 

  • S. Bargmann, B. Svendsen, Theoretical and algorithmic formulation of models for energetic GND-based hardening in single crystals. J. Multiscale Comput. Eng. 10(6), 551–565 (2012)

    Article  Google Scholar 

  • T. Bartel, A. Menzel, B. Svendsen, Thermodynamic and relaxation-based modelling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59, 1004 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Baskes, Modified embedded atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992)

    Article  Google Scholar 

  • C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation-induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)

    Article  MATH  Google Scholar 

  • A.A. Benzerga, An analysis of exhaustion hardening in micron-scale plasticity. Int. J. Plast. 24(7), 1128–1157 (2008)

    Article  MATH  Google Scholar 

  • A.A. Benzerga, Micro-pillar plasticity: 2.5D mesoscopic simulations. J. Mech. Phys. Solids 57, 1459–1469 (2009)

    Article  MATH  Google Scholar 

  • A.A. Benzerga, Y. Brechet, A. Needleman, E. Van der Giessen, Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics. Model. Simul. Mater. Sci. Eng. 12, 159–196 (2004)

    Article  Google Scholar 

  • V.L. Berdichevsky, On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006)

    Article  Google Scholar 

  • V.L. Berdichevsky, Entropy of microstructure. J. Mech. Phys. Solids 56, 742–771 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Bertin, M.V. Upadhyay, C. Pradalier, L. Capolungo, A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics. Model. Simul. Mater. Sci. Eng. 23(6), 065009 (2015)

    Article  Google Scholar 

  • I.J. Beyerlein, A. Misra, X. Zhang, Growth twins and deformation twins in metals. Annu. Rev. Mater. Res. 44, 329–363 (2014)

    Article  Google Scholar 

  • T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, D. Raabe, The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int. J. Plast. 25, 1655–1683 (2009)

    Article  MATH  Google Scholar 

  • B.A. Bilby, E. Smith, Continuous distributions of dislocations III. Proc. R. Soc. Lond. A 236, 481–505 (1956)

    Article  MathSciNet  Google Scholar 

  • A. Binder, M. Luskin, D. Perez, A.F. Voter, Analysis of transition state theory rates upon spatial coarse-graining. Multiscale Model. Simul. 13, 890–915 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Brenner, A.J. Beaudoin, P. Suquet, A. Acharya, A. Acharya, Numerical implementation of static field dislocation mechanics theory for periodic media. Philos. Mag. 94(16), 1764–1787 (2014)

    Article  Google Scholar 

  • F. Bridier, D.L. McDowell, P. Villechaise, J. Mendez, Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int. J. Plast. 25(6), 1066–1082 (2009)

    Article  MATH  Google Scholar 

  • T.E. Buchheit, G.W. Wellman, C. Battaille, Investigating the limits of polycrystal plasticity modeling. Int. J. Plast. 21(2), 221–249 (2005)

    Article  MATH  Google Scholar 

  • M.J. Buehler, Atomistic Modeling of Materials Failure (Springer, 2008). isbn:978-0-387-76426-9

    Google Scholar 

  • M.J. Buehler, A. Hartmaier, M.A. Duchaineau, F.F. Abraham, H. Gao, The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation. Acta Mech. Sinica 21, 103–111 (2005)

    Article  MATH  Google Scholar 

  • M. Buehler, A. Van Duin, W.A. Goddard, Multiparadigm modeling of dynamical crack propagation in Silicon using a reactive force field. Phys. Rev. Lett. 96(9), 095505 (2006)

    Article  Google Scholar 

  • V. Bulatov, F.F. Abraham, L. Kubin, B. Devincre, S. Yip, Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391(6668), 669–672 (1998)

    Article  Google Scholar 

  • V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce, T.D. de la Rubia, Dislocation multi-junctions and strain hardening. Nature 44, 1174–1178 (2006)

    Article  Google Scholar 

  • E.P. Busso, F.T. Meissonnier, N.P. O’Dowd, Gradient-dependent deformation of two-phase single crystals. J. Mech. Phys. Solids 48, 2333–2361 (2000)

    Article  MATH  Google Scholar 

  • G.C. Butler, D.L. McDowell, Polycrystal constraint and grain subdivision. Int. J. Plast. 14(8), 703–717 (1998)

    Article  MATH  Google Scholar 

  • W. Cai, A. Arsenlis, C.R. Weingberger, V.V. Bulatov, A non-singular continuum theory of dislocations. J. Mech. Phys. Solids 54, 561–587 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Cai, R.B. Sills, D.M. Barnett, W.D. Nix, Modeling a distribution of point defects as misfitting inclusions in stressed solids. J. Mech. Phys. Solids 66, 154–171 (2014)

    Article  MATH  Google Scholar 

  • C. Carstensen, K. Hackl, A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity. Proc. R Soc Lond A458, 299–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • G.M. Castelluccio, D.L. McDowell, Mesoscale cyclic crystal plasticity with dislocation substructures. Int. J. Plast. 98, 1–26 (2017)

    Article  Google Scholar 

  • S.S. Chakravarthy, W.A. Curtin, Effect of source and obstacle strengths on yield stress: a discrete dislocation study. J. Mech. Phys. Solids 58, 625–635 (2010)

    Article  Google Scholar 

  • S.S. Chakravarthy, W.A. Curtin, Stress-gradient plasticity. Proc. Natl. Acad. Sci. U S A 108, 15716–15720 (2011)

    Article  Google Scholar 

  • L.Q. Chen, Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  • Y. Chen, Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009)

    Article  Google Scholar 

  • Z. Chen, K.T. Chu, D.J. Srolovitz, J.M. Rickman, M.P. Haataja, Dislocation climb strengthening in systems with immobile obstacles: three-dimensional level-set simulation study. Phys. Rev. B 81, 054104 (2010)

    Article  Google Scholar 

  • Y. Chen, J. Zimmerman, A. Krivtsov, D.L. McDowell, Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49, 1137–1349 (2011)

    Article  MATH  Google Scholar 

  • L. Chen, J. Chen, R. Lebensohn, L.-Q. Chen, An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals. Comput. Methods Appl. Mech. Eng. 285, 829–848 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • K. Cheong, E. Busso, A. Arsenlis, A study of microstructural length scale effects on the behavior of FCC polycrystals using strain gradient concepts. Int. J. Plast. 21(9), 1797–1814 (2005)

    Article  MATH  Google Scholar 

  • J. Cho, T. Junge, F.-F. Molinari, G. Anciaux, Toward a 3D coupled atomistics and discrete dislocation dynamics simulation: dislocation core structures and Peierls stresses with several character angles in FCC aluminum. Adv. Model. Simul. Eng. Sci. 2, 12 (2015). https://doi.org/10.1186/s40323-015-0028-6

    Article  Google Scholar 

  • F.M. Ciorba, S. Groh, M.F. Horstemeyer, Parallelizing discrete dislocation dynamics simulations on multi-core systems. Proc. Comp. Sci. 1, 2135–2143 (2012)

    Article  Google Scholar 

  • J.D. Clayton, D.J. Bammann, D.L. McDowell, A geometric framework for the kinematics of crystals with defects. Philos. Mag. 85(33–35), 3983–4010 (2005)

    Article  Google Scholar 

  • N.M. Cordero, A. Gaubert, S. Forest, E.P. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • N.M. Cordero, S. Forest, E.P. Busso, Micromorphic modelling of grain size effects in metal polycrystals. GAMM-Mitteilungen 36(2), 186–202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • J.C. Crone, P.W. Chung, K.W. Leiter, J. Knap, S. Aubry, G. Hommes, A. Arsenlis, A multiply parallel implementation of finite element-based discrete dislocation dynamics for arbitrary geometries. Model. Simul. Mater. Sci. Eng. 22, 035014–035041 (2014)

    Article  Google Scholar 

  • W.A. Curtin, V.S. Deshpande, A. Needleman, E. Van der Giessen, M. Wallin, Hybrid discrete dislocation models for fatigue crack growth. Int. J. Fatigue 32, 1511–1520 (2010)

    Article  Google Scholar 

  • A. Das, A. Acharya, P. Suquet, Microstructure in plasticity without nonconvexity. Comput. Mech. 57(3), 387–403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984)

    Article  Google Scholar 

  • J. Deng, A. El-Azab, Temporal statistics and coarse graining of dislocation ensembles. Philos. Mag. 90(27–28), 3651–3678 (2010)

    Article  Google Scholar 

  • C.S. Deo, D.J. Srolovitz, First passage time Markov chain analysis of rare events for kinetic Monte Carlo: double kink nucleation during dislocation glide. Model. Simul. Mater. Sci. Eng. 10, 581–596 (2002)

    Article  Google Scholar 

  • B. Devincre, T. Hoc, L. Kubin, Dislocation mean free paths and strain hardening of crystals. Science 320(5884), 1745–1748 (2008)

    Article  Google Scholar 

  • B. Devincre, R. Madec, G. Monnet, S. Queyreau, R. Gatti, L. Kubin, Modeling crystal plasticity with dislocation dynamics simulations: the ‘microMegas’ code. Mechanics of nano-objects. (Presses del’Ecole des Mines de Paris, Paris, 2011), pp. 81–100. http://zig.onera.fr/mm_home_page/doc/Article_mM_2011.pdf. Accessed 20 Dec 2017

  • M.P. Dewald, W.A. Curtin, Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al. Philos. Mag. 87, 4615–4641 (2007a)

    Article  Google Scholar 

  • M.P. Dewald, W.A. Curtin, Multiscale modeling of dislocation/grain boundary interactions: I. Edge dislocations impinging on S11 (113) tilt boundary in Al. Model. Simul. Mater. Sci. Eng. 15, S193–S215 (2007b)

    Article  Google Scholar 

  • M.P. Dewald, W.A. Curtin, Multiscale modeling of dislocation/grain-boundary interactions: III. 60o dislocations impinging on Σ3:Σ9 and Σ11 tilt boundaries in Al. Model. Simul. Mater. Sci. Eng. 19, 055002 (2011)

    Article  Google Scholar 

  • O.W. Dillon, J. Kratochvíl, A strain gradient theory of plasticity. Int. J. Solids Struct. 6, 1513–1533 (1970)

    Article  MATH  Google Scholar 

  • Y. Dong, W.A. Curtin, Thermally activated plastic flow in the presence of multiple obstacle types. Model. Simul. Mater. Sci. Eng. 20, 075006 (2012)

    Article  Google Scholar 

  • F.P.E. Dunne, R. Kiwanuka, A.J. Wilkinson, Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. Proc. R. Soc. A 468, 2509–2531 (2012)

    Article  Google Scholar 

  • L.M. Dupuy, E.B. Tadmor, R.E. Miller, R. Phillips, Finite-temperature quasicontinuum: molecular dynamics without all the atoms. Phys. Rev. Lett. 95, Art. No. 060202 (2005)

    Google Scholar 

  • B. Eidel, A. Stukowski, A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57, 87–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • A. El-Azab, Statistical mechanics treatment of the evolution of dislocation distributions in single crystals. Phys. Rev. B 61(18), 11956–11966 (2000)

    Article  Google Scholar 

  • A. El-Azab, Statistical mechanics of dislocation systems. Scr. Mater. 54, 723–727 (2006)

    Article  Google Scholar 

  • A. El-Azab, J. Deng, M. Tang, Statistical characterization of dislocation ensembles. Philos. Mag. 87(8–9), 1201–1223 (2007)

    Article  Google Scholar 

  • K.R. Elder, M. Grant, Modeling elastic and plastic deformations in non-equilibrium processing using phase field crystals. Phys. Rev. E 70, 051605 (2004)

    Article  Google Scholar 

  • K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002)

    Article  Google Scholar 

  • A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • A.C. Eringen, Microcontinuum Field Theories. I. Foundations and Solids (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  • A.C. Eringen, W.D. Claus Jr, A micromorphic approach to dislocation theory and its relation to several existing theories, in Fundamental Aspects of Dislocation Theory, vol. 2, ed. by J.A. Simmons, R. de Wit, R. Bullough, Library of Congress Catalog Number 70-602416, Conference Proceedings (National Bureau of Standards, U.S. Department of Commerce, 1970), pp. 1023–1040

    Google Scholar 

  • M.I. Espanol, D.M. Kochmann, S. Conti, M. Ortiz, A Γ-convergence analysis of the quasicontinuum method. Multscale Model. Simul. (SIAM) 11(3), 766–794 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSC and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004)

    Article  MATH  Google Scholar 

  • J. Fan, Multiscale Analysis of Deformation and Failure of Materials (Wiley, West Sussex, 2011)

    Google Scholar 

  • R. Fan, Z. Yuan, J. Fish, Adaptive two-scale nonlinear homogenization. Int. J. Comput. Methods Eng. Sci. Mech. 11, 27–36 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Fish J, Multiscale Methods: Bridging the Scales in Science and Engineering, 1st edn. (Oxford University Press, Oxford, 2009). isbn: 978-0-19-923385-4

    Google Scholar 

  • J.C. Fisher, Application of Cottrell’s theory of yielding to delayed yielding in steel. Trans. Am. Soc. Met. 47, 451 (1955)

    Google Scholar 

  • N.A. Fleck, J.W. Hutchinson, A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiments. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  • S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  • S. Forest, D.K. Trinh, Generalized continua and non-homogeneous boundary conditions in homogenization methods. Z. Angew. Math. Mech. 91(2), 90–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest, F. Barbe, G. Cailletaud, Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37, 7105–7126 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • C. Fressengeas, V. Taupin, L. Capolungo, An elasto-plastic theory of dislocation and disclination fields. Int. J. Solids Struct. 48, 3499–3509 (2011)

    Article  Google Scholar 

  • J. Friedel, in Electron Microscopy and Strength of Crystals, ed. by G. Thomas, J. Washbum (Interscience, Wiley, New York, NY, 1962), pp. 605–651

    Google Scholar 

  • T.S. Gates, J.A. Hinkley, Computational materials: modeling and simulation of nanostructured materials and systems. NASA/TM-2003-212163, 2003

    Google Scholar 

  • M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Multiscale first-order and second-order computational homogenization of microstructures towards continua. Int. J. Multiscale Comput. Eng. 1(4), 371–386 (2003)

    Article  Google Scholar 

  • M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans, Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)

    Article  MATH  Google Scholar 

  • J.M. Gerken, P.R. Dawson, A crystal plasticity model that incorporates stresses and strains due to slip gradients. J. Mech. Phys. Solids 56(4), 1651–1672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • N.M. Ghoniem, A perspective on dislocation dynamics, in Handbook of Materials Modeling, vol. 1: Methods and Models, ed. by S. Yip (Springer, Netherlands, 2005), pp. 1–7

    Chapter  Google Scholar 

  • N.M. Ghoniem, S.-H. Tong, L.Z. Sun, Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys. Rev. B 61(1), 1–15 (2000)

    Article  Google Scholar 

  • S. Ghosh, P. Chakraborty, Microstructure and load sensitive fatigue crack nucleation in Ti-6242 using accelerated crystal plasticity FEM simulations. Int. J. Fatigue 48, 231–246 (2013)

    Article  Google Scholar 

  • S. Ghosh, K. Lee, P. Raghavan, A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int. J. Solids Struct. 38(14), 2335–2385 (2001)

    Article  MATH  Google Scholar 

  • S. Ghosh, J. Bai, P. Raghavan, Concurrent multi-level model for damage evolution in micro structurally debonding composites. Mech. Mater. 39(3), 241–266 (2007)

    Article  Google Scholar 

  • S. Ghosh, A. Shahba, X. Tu, E.L. Huskins, B.E. Schuster, Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part II: Image-based model with experimental validation. Int. J. Plast. 87, 69–85 (2016a)

    Article  Google Scholar 

  • S. Ghosh, G. Weber, S. Keshavarz, Multiscale modeling of polycrystalline Nickel-based superalloys accounting for subgrain microstructures. Mech. Res. Commun. 78, 34–46 (2016b)

    Article  Google Scholar 

  • H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48(1), 1–29 (2000)

    Article  Google Scholar 

  • R. Gracie, T. Belytschko, An adaptive concurrent multiscale method for the dynamic simulation of dislocations. Int. J. Numer. Methods Eng. 86(4–5), 575–597 (2011)

    Article  MATH  Google Scholar 

  • A. Granato, K. Lucke, J. Schlipf, L. Teutonico, Entropy factors for thermally activated unpinning of dislocations. J. Appl. Phys. 35(9), 2732–2745 (1964)

    Article  Google Scholar 

  • M.S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398 (1954)

    Article  MathSciNet  Google Scholar 

  • S. Groh, H.M. Zbib, Advances in discrete dislocations dynamics and multiscale modeling. J. Eng. Mater. Technol. 131, 041209-1–041209-10 (2009)

    Article  Google Scholar 

  • S. Groh, E.B. Marin, M.F. Horstemeyer, H.M. Zbib, Multiscale modeling of the plasticity in an aluminum single crystal. Int. J. Plast. 25, 1456–1473 (2009)

    Article  MATH  Google Scholar 

  • I. Groma, Link between the microscopic and mesocopic length-scale description of the collective behavior of dislocations. Phys. Rev. B 56(10), 5807–5813 (1997)

    Article  Google Scholar 

  • I. Groma, Statistical physical approach to describe the collective properties of dislocations, in Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics, ed. by P. Gumbsch, R. Pippan (Eds), (CISM International Centre for Mechanical Science, 2010), pp. 213–270. isbn:978-3-7091-0283-1

    Chapter  MATH  Google Scholar 

  • I. Groma, F.F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271 (2003)

    Article  Google Scholar 

  • I. Groma, Z. Vandrus, P.D. Ispanovity, Scale-free phase field theory of dislocations. Phys. Rev. Lett. 114, 015503 (2015)

    Article  Google Scholar 

  • I. Groma, M. Zaiser, P.D. Ispanovity, Dislocation Patterning in a 2D Continuum Theory of Dislocations. arXiv:1601.07831 [cond-mat.mtrl-sci] (2016)

    Google Scholar 

  • R.K. Guduru, K.A. Darling, R.O. Scattergood, C.C. Koch, K.L. Murty, Mechanical properties of electrodeposited nanocrystalline copper using tensile and shear punch tests. J. Mater. Sci. 42(14), 5581–5588 (2007)

    Article  Google Scholar 

  • A.N. Gulluoglu, D.J. Srolovitz, R. Lesar, P.S. Lomdahl, Dislocation distributions in two dimensions. Scr. Metall. 23, 1347–1352 (1989)

    Article  Google Scholar 

  • P. Gumbsch, An atomistic study of brittle fracture: toward explicit failure criteria from atomistic modeling. J. Mater. Res. 10(11), 2897–2907 (1995)

    Article  Google Scholar 

  • B. Gurrutxaga-Lerma, D.S. Balint, D. Dini, D.A. Eakins, A.P. Sutton, A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading. Proc. R. Soc. A 469, 20130141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50(1), 5–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin, L. Anand, A gradient theory for single-crystal plasticity. Model. Simul. Mater. Sci. Eng. 15, S263–S270 (2007)

    Article  Google Scholar 

  • P.J. Guruprasad, A.A. Benzerga, Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis. J. Mech. Phys. Solids 56, 132–156 (2008)

    Article  MATH  Google Scholar 

  • K. Hackl, U. Hoppe, D.M. Kochmann, Generation and evolution of inelastic microstructures – an overview. GAMM Mitteilungen 35, 91–106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • C.S. Hartley, Y. Mishin, Representation of dislocation cores using Nye tensor distributions. Mater. Sci. Eng. A 400–401, 18–21 (2005)

    Article  Google Scholar 

  • G. Henkelman, H. Jonsson, Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 115, 9657–9666 (2001)

    Article  Google Scholar 

  • G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

    Article  Google Scholar 

  • C. Hennessey, G.M. Castelluccio, D.L. McDowell, Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6. Mater. Sci. Eng. A 687, 241–248 (2017)

    Article  Google Scholar 

  • M. Hiratani, H.M. Zbib, On dislocation–defect interactions and patterning: stochastic discrete dislocation dynamics (SDD). J. Nucl. Mater. 323, 290–303 (2003)

    Article  Google Scholar 

  • M. Hiratani, H.M. Zbib, M.A. Khaleel, Modeling of thermally activated dislocation glide and plastic flow through local obstacles. Int. J. Plast. 19(9), 1271–1296 (2003)

    Article  MATH  Google Scholar 

  • J.P. Hirth, A brief history of dislocation theory. Metall. Trans. A. 16(12), 2085–2090 (1985)

    Article  Google Scholar 

  • T. Hochrainer, Multipole expansion of continuum dislocation dynamics in terms of alignment tensors. Philos. Mag. 95, 1321–1367 (2015)

    Article  Google Scholar 

  • T. Hochrainer, M. Zaiser, P. Gumbsch, A three-dimensional continuum theory of dislocation systems: kinematics and mean-field formulation. Philos. Mag. 87, 1261–1282 (2007)

    Article  Google Scholar 

  • T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, Continuum dislocation dynamics: towards a physical theory of crystal plasticity. J. Mech. Phys. Solids 63, 167–178 (2014)

    Article  Google Scholar 

  • M.F. Horstemeyer, D.L. McDowell, Modeling effects of dislocation substructure in polycrystal elastoviscoplasticity. Mech. Mater. 27, 145–163 (1998)

    Article  Google Scholar 

  • M.F. Horstemeyer, M.I. Baskes, V.C. Prantil, J. Philliber, S. Vonderheide, A multiscale analysis of fixed-endsimple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory. Model. Simul. Mater. Sci. Eng. 11, 265–286 (2003)

    Article  Google Scholar 

  • D.A. Hughes, N. Hansen, High angle boundaries and orientation distributions at large strains. Scr. Metall. Mater. 33(2), 315–321 (1995)

    Article  Google Scholar 

  • D.A. Hughes, Q. Liu, D.C. Chrzan, N. Hansen, Scaling of microstructural parameters: misorientations of deformation induced boundaries. Acta Mater. 45(1), 105–112 (1997)

    Article  Google Scholar 

  • D. Hull, D.J. Bacon, Introduction to Dislocations, 5th edn. (Elsevier, Oxford, 2011)

    Google Scholar 

  • A. Hunter, F. Saied, C. Le, M. Koslowski, Large-scale 3D phase field dislocation dynamics simulations on high-performance architecture. Int. J. High Perform. Comput. Appl. 25(2), 223–235 (2010)

    Article  Google Scholar 

  • D.E. Hurtado, M. Ortiz, Finite element analysis of geometrically necessary dislocations in crystal plasticity. Int. J. Numer. Methods Eng. 93, 66–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • A.M. Hussein, J.A. El-Awady, Quantifying dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals. J. Mech. Phys. Solids 91, 126–144 (2016)

    Article  Google Scholar 

  • A.M. Hussein, S.I. Rao, M.D. Uchic, D.M. Dimiduk, J.A. El-Awady, Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in FCC crystals. Acta Mater. 85, 180–190 (2015)

    Article  Google Scholar 

  • J. Irving, J. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 8, 817–829 (1950)

    Article  MathSciNet  Google Scholar 

  • P.D. Ispánovity, I. Groma, G. Györgyi, P. Szabo, W. Hoffelner, Criticality of relaxation in dislocation systems. Phys. Rev. Lett. 107, 085506 (2011)

    Article  Google Scholar 

  • P.D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, M.J. Alava, Avalanches in 2D dislocation systems: plastic yielding is not depinning. Phys. Rev. Lett. 112, 235501 (2014)

    Article  Google Scholar 

  • D.S. Joseph, P. Chakraborty, S. Ghosh, Wavelet transformation based multi-time scaling method for crystal plasticity FE simulations under cyclic loading. Comput. Methods Appl. Mech. Eng. 199, 2177–2194 (2010)

    Article  MATH  Google Scholar 

  • K. Kang, J. Yin, W. Cai, Stress dependence of cross slip energy barrier for face-centered cubic nickel. J. Mech. Phys. Solids 62, 181–193 (2014)

    Article  Google Scholar 

  • O. Kapetanou, V. Koutsos, E. Theotokoglou, D. Weygand, M. Zaiser, Statistical analysis and stochastic dislocation based modeling of microplasticity. J. Mech. Behav. Mater. 24(3-4), 105–113 (2015)

    Article  Google Scholar 

  • C. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface-indentation. Phys. Rev. B 58, 11085–11088 (1998)

    Article  Google Scholar 

  • S.M. Keralavarma, A.A. Benzerga, High-temperature discrete dislocation plasticity. J. Mech. Phys. Solids 82, 1–22 (2015)

    Article  MathSciNet  Google Scholar 

  • S.M. Keralavarma, W.A. Curtin, Strain hardening in 2D discrete dislocation dynamics simulations: a new ‘2.5D’ algorithm. J. Mech. Phys. Solids 95, 132–146 (2016)

    Article  Google Scholar 

  • S. Keshavarz, S. Ghosh, Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater. 61, 6549–6561 (2013)

    Article  Google Scholar 

  • S. Keshavarz, S. Ghosh, Hierarchical crystal plasticity FE model for Nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int. J. Solids Struct. 55, 17–31 (2015)

    Article  Google Scholar 

  • Kestin J, Rice JR, in A Critical Review of Thermodynamics, ed. by E. B. Stuart et al. (Mono Book Corporation, Baltimore, 1970)

    Google Scholar 

  • S.M.A. Khan, H.M. Zbib, D.A. Hughes, Modeling planar dislocation boundaries using multi-scale dislocation dynamics plasticity. Int. J. Plast. 20, 1059–1092 (2004)

    Article  MATH  Google Scholar 

  • T. Khraishi, H.M. Zbib, Free-surface effects in 3D dislocation dynamics: formulation and modeling. ASME J. Eng. Mater. Technol. 124(3), 342–351 (2002)

    Article  Google Scholar 

  • W.K. Kim, E.B. Tadmor, Entropically stabilized dislocations. Phys. Rev. Lett. 112, 105501 (2014)

    Article  Google Scholar 

  • W.K. Kim, M. Luskin, D. Perez, A.F. Voter, E.B. Tadmor, Hyper-QC: an accelerated finite-temperature quasicontinuum method using hyperdynamics. J. Mech. Phys. Solids 63, 94–112 (2014)

    Article  MATH  Google Scholar 

  • J.G. Kirkwood, The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14, 180 (1946)

    Article  Google Scholar 

  • B. Klusemann, D.M. Kochmann, Microstructural pattern formation in finite-deformation single-slip crystal plasticity under cyclic loading: relaxation vs. gradient plasticity. Comput. Methods Appl. Mech. Eng. 278, 765–793 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Knap, M. Ortiz, An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49, 1899–1923 (2001)

    Article  MATH  Google Scholar 

  • D.M. Kochmann, K. Hackl, The evolution of laminates in finite crystal plasticity: a variational approach. Contin. Mech. Thermodyn. 23, 63–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • D.M. Kochmann, G.N. Venturini, A meshless quasicontinuum method based on local maximum-entropy interpolation. Model. Simul. Mater. Sci. Eng. 22, 034007–034035 (2014)

    Article  Google Scholar 

  • U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48(2003), 171–273 (2003)

    Article  Google Scholar 

  • U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1 (1975)

    Article  Google Scholar 

  • S. Kohlhoff, P. Gumbsch, H.F. Fischmeister, Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philos. Mag. A 64, 851–878 (1991)

    Article  Google Scholar 

  • M. Koslowski, A. Cuitino, M. Ortiz, R. LeSar, R. Thomson, Dislocation patterns and the deformation of metals. 2004 TMS Annual Meeting and Exhibition, Charlotte, NC, March 17, 2004. http://www.ortiz.caltech.edu/presentations/pdf/tms-04.pdf. Accessed 16 Jan 2018

  • B. Kouchmeshky, N. Zabaras, Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Comput. Mater. Sci. 48, 213–227 (2010)

    Article  Google Scholar 

  • V. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002)

    Article  MATH  Google Scholar 

  • V.G. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48–51), 5525–5550 (2004)

    Article  MATH  Google Scholar 

  • J. Kratochvil, R. Sedlacek, Pattern formation in the framework of the continuum theory of dislocations. Phys. Rev. B 67(9), 094105 (2003)

    Article  Google Scholar 

  • J. Kratochvil, M. Kruzik, R. Sedlacek, Statistically based continuum model of misoriented dislocation cell structure formation. Phys. Rev. B 75, 064104 (2007)

    Article  Google Scholar 

  • R. Kubo, M. Yokota, S. Nakajima, Statistical-mechanical theory of irreversible processes. II. Response to thermal disturbance. J. Phys. Soc. Jpn. 12, 1203 (1957)

    Article  MathSciNet  Google Scholar 

  • D. Kuhlmann-Wilsdorf, Theory of plastic deformation: properties of low energy dislocation structures. Mater. Sci. Eng. A 113, 1–41 (1989)

    Article  Google Scholar 

  • Y. Kulkarni, J. Knap, M. Ortiz, A variational approach to coarse-graining of equilibrium and non-equilibrium atomistic description at finite temperature. J. Mech. Phys. Solids 56(4), 1417–1449 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • K.S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743–5774 (2003)

    Article  Google Scholar 

  • S. Kwon, Y. Lee, J.Y. Park, D. Sohn, J.H. Lim, S. Im, An efficient three-dimensional adaptive quasicontinuum method using variable-node elements. J. Comput. Phys. 228, 4789–4810 (2009)

    Article  MATH  Google Scholar 

  • J.S. Langer, Statistical thermodynamics of strain hardening in polycrystalline solids. Phys. Rev. E 92, 032125 (2015)

    Article  Google Scholar 

  • J.S. Langer, Thermal effects in dislocation theory. Phys. Rev. E 94, 063004 (2016)

    Article  Google Scholar 

  • J.S. Langer, Thermodynamic theory of dislocation-enabled plasticity. Phys. Rev. E 96, 053005 (2017)

    Article  Google Scholar 

  • J.S. Langer, E. Bouchbinder, T. Lookman, Thermodynamic theory of dislocation-mediated plasticity. Acta Mater. 58(10), 3718–3732 (2010)

    Article  Google Scholar 

  • K.C. Le, Thermodynamic dislocation theory for non-uniform plastic deformations. J. Mech. Phys. Solids 111, 157–169 (2018)

    Article  MathSciNet  Google Scholar 

  • K.C. Le, T.M. Tran, Dislocation mediated plastic flow in aluminum: comparison between theory and experiment. Int. J. Eng. Sci. 119, 50–54 (2017)

    Article  Google Scholar 

  • K.C. Le, T.M. Tran, J.S. Langer, Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel. Phys. Rev. E 96, 013004 (2017)

    Article  Google Scholar 

  • R.A. Lebensohn, A. Needleman, Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms. J. Mech. Phys. Solids 97, 333–351 (2016)

    Article  MathSciNet  Google Scholar 

  • R.A. Lebensohn, K.A. Kanjarla, P. Eisenlohr, An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 32–33, 59–69 (2012)

    Article  Google Scholar 

  • J. Lemaitre, J.L. Chaboche, Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1990)

    Book  MATH  Google Scholar 

  • J. Lepinoux, L.P. Kubin, The dynamic organization of dislocation structures – a simulation. Scr. Metall. 21, 833–838 (1987)

    Article  Google Scholar 

  • R. LeSar, J.M. Rickman, Incorporation of local structure in continuous theory of dislocations. Phys. Rev. B 69, 172105 (2004)

    Article  Google Scholar 

  • J. Li, The mechanics and physics of defect nucleation. MRS Bull. 32, 151–159 (2007)

    Article  Google Scholar 

  • J. Li, A.H.W. Ngan, P. Gumbsch, Atomistic modeling of mechanical behavior. Acta Mater. 51(19), 5711–5742 (2003)

    Article  Google Scholar 

  • J. Li, P.G. Kevrekidis, C.W. Gear, I.G. Kevrekidis, Deciding the nature of the coarse equation through microscopic simulations: the baby-bathwater scheme. SIAM Rev. 49(3), 469–487 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • D. Li, H. Zbib, X. Sun, M. Khaleel, Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics. Int. J. Plast. 52, 3–17 (2014)

    Article  Google Scholar 

  • C. Liu, Dislocation-Based Crystal Plasticity Finite Element Modeling of Polycrystalline Material Deformation. PhD Thesis, University of California-Los Angeles, 2006

    Google Scholar 

  • W.K. Liu, H.S. Park, D. Qian, E.G. Karpov, H. Kadowaki, G.J. Wagner, Bridging scale methods for nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 195(13–16), 1407–1421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • B. Liu, A. Arsenlis, S. Aubry, Computing forces on interface elements exerted by dislocations in an elastically anisotropic crystalline material. Model. Simul. Mater. Sci. Eng. 24, 055013 (2016)

    Article  Google Scholar 

  • J.T. Lloyd, Implications of Limited Slip in Crystal Plasticity. M.S. Thesis, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 2010

    Google Scholar 

  • J.T. Lloyd, J.D. Clayton, R.A. Austin, D.L. McDowell, Plane wave simulation of elastic-viscoplastic single crystals. J. Mech. Phys. Solids 69, 14–32 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  • J.T. Lloyd, J.D. Clayton, R.C. Becker, D.L. McDowell, Simulation of shock wave propagation in single crystal and polycrystalline Aluminum. Int. J. Plast. 60, 118–144 (2014b)

    Article  Google Scholar 

  • M.-A. Louchez, L. Thuinet, R. Besson, A. Legris, Microscopic phase-field modeling of HCP/FCC interfaces. Comput. Mater. Sci. 132, 62–73 (2017)

    Article  Google Scholar 

  • L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304(5669), 422–426 (2004)

    Article  Google Scholar 

  • D.J. Luscher, A Hierarchical Framework for the Multiscale Modeling of Microstructure Evolution in Heterogeneous Materials, PhD Thesis, Georgia Tech, 2010

    Google Scholar 

  • D.J. Luscher, D.L. McDowell, C.A. Bronkhorst, A second gradient theoretical framework for hierarchical multiscale modeling of materials. Int. J. Plast. 26(8), 1248–1275 (2010)

    Article  MATH  Google Scholar 

  • D.J. Luscher, D.L. McDowell, C.A. Bronkhorst, Essential features of fine scale boundary conditions for second gradient multiscale homogenization of statistical volume elements. J. Multiscale Comput. Eng. 10(5), 461–486 (2012)

    Article  Google Scholar 

  • H. Lyu, N. Taheri-Nassaj, H.M. Zbib, A multiscale gradient-dependent plasticity model for size effects. Philos. Mag. 96(18), 1883–1908 (2016)

    Article  Google Scholar 

  • X. Ma, N. Zabaras, Kernal principal component analysis for stochastic input model generation. J. Comput. Phys. 230, 7311–7331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)

    Article  Google Scholar 

  • J. Marian, G. Venturini, B.L. Hansen, J. Knap, M. Ortiz, G.H. Campbell, Finite-temperature extension of the quasicontinuum method using Langevin dynamics: entropy losses and analysis of errors. Model. Simul. Mater. Sci. Eng. 18(1), 015003 (2010)

    Article  Google Scholar 

  • X. Markenscoff, R.J. Clifton, The nonuniformly moving edge dislocation. J. Mech. Phys. Solids 29, 253–262 (1981)

    Article  MATH  Google Scholar 

  • E. Martınez, J. Mariana, A. Arsenlis, M. Victoria, J.M. Perlado, Atomistically informed dislocation dynamics in FCC crystals. J. Mech. Phys. Solids 56, 869–895 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • M.V. Matveev, O.V. Selivanikova, D.N. Cherepanov, Formation of deformation substructures in FCC crystals under the influence of point defect fluxes. Mater. Sci. Eng. 124, 012129 (2016)

    Google Scholar 

  • J.R. Mayeur, D.L. McDowell, Bending of single crystal thin films as predicted by micropolar crystal plasticity. Int. J. Eng. Sci. 49, 1357–1366 (2011)

    Article  MATH  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, An evaluation of higher-order single crystal strength models for constrained thin films subjected to simple shear. J. Mech. Phys. Solids 61(9), 1935–1954 (2013)

    Article  MathSciNet  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, A comparison of Gurtin-type and micropolar single crystal plasticity with generalized stresses. Int. J. Plast. 57, 29–51 (2014)

    Article  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, Micropolar crystal plasticity simulations of particle strengthening. Model. Simul. Mater. Sci. Eng. 23(6), 065007 (2015)

    Article  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, D.J. Bammann, Dislocation-based micropolar single crystal plasticity: comparison of multi- and single-criterion theories. J. Mech. Phys. Solids 59(2), 398–422 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • D.L. McDowell, Evolving Structure and Internal State Variables. Nadai Award Lecture, ASME Materials Division, ASME IMECE, Dallas, TX, November 20 (1997)

    Google Scholar 

  • D.L. McDowell, Non-associative aspects of multiscale evolutionary phenomena, in Proceedings of the 4th International Conference on Constitutive Laws for Engineering Materials, 1999, ed. by R.C. Picu, E. Krempl, pp. 54–57

    Google Scholar 

  • McDowell DL, Internal state variable theory, in Handbook of Materials Modeling, Part A: Methods, ed. by S. Yip, M.F. Horstemeyer (Springer, The Netherlands, 2005), pp. 1151–1170

    Chapter  Google Scholar 

  • D.L. McDowell, Viscoplasticity of heterogeneous metallic materials. Mater. Sci. Eng. R. Rep. 62(3), 67–123 (2008)

    Article  Google Scholar 

  • D.L. McDowell, A perspective on trends in multiscale plasticity. Int. J. Plast. 26(9), 1280–1309 (2010)

    Article  MATH  Google Scholar 

  • D.L. McDowell, F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32(9), 1521–1542 (2010)

    Article  Google Scholar 

  • D.L. McDowell, J.H. Panchal, H.-J. Choi, C.C. Seepersad, J.K. Allen, F. Mistree, Integrated Design of Multiscale, Multifunctional Materials and Products (Elsevier, 2009, 392 pages), ISBN-13: 978-1-85617-662-0

    Google Scholar 

  • D.L. McDowell, S. Ghosh, S.R. Kalidindi, Representation and computational structure-property relations of random media. JOM 63(3), 45–51 (2011)

    Article  Google Scholar 

  • B.G. Mendis, Y. Mishin, C.S. Hartley, K.J. Hemker, Use of the Nye tensor in analyzing HREM images of bcc screw dislocations. Philos. Mag. 86(29–31), 4607–4640 (2006)

    Article  Google Scholar 

  • S.D. Mesarovic, Energy, configurational forces and characteristic lengths associated with the continuum description of geometrically necessary dislocations. Int. J. Plast. 21, 1855–1889 (2005)

    Article  MATH  Google Scholar 

  • M.C. Messner, M. Rhee, A. Arsenlis, N.R. Barton, A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations. Model. Simul. Mater. Sci. Eng. 25, 044001 (2017)

    Article  Google Scholar 

  • W. Meyer, H. Neldel, Uber die Beziehungen zwischen der Energiekonstanten e und der Men-genkonstanten a der Leitwerts-Temperaturformel bei oxydischen Halbleitern. Z. Tech. Phys. 12, 588–593 (1937)

    Google Scholar 

  • J.R. Mianroodi, B. Svendsen, Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems. J. Mech. Phys. Solids 77, 109–122 (2015)

    Article  MathSciNet  Google Scholar 

  • R.E. Miller, A. Acharya, A stress-gradient based criterion for dislocation nucleation in crystals. J. Mech. Phys. Solids 42(7), 1507–1525 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Quasicontinuum simulation of fracture at the atomic scale. Model. Simul. Mater. Sci. Eng. 6(5), 607–638 (1998a)

    Article  Google Scholar 

  • R. Miller, M. Ortiz, R. Phillips, V. Shenoy, E.B. Tadmor, Quasicontinuum models of fracture and plasticity. Eng. Fract. Mech. 61(3-4), 427–444 (1998b)

    Article  Google Scholar 

  • Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999)

    Article  Google Scholar 

  • Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001)

    Article  Google Scholar 

  • A. Misra, X. Zhang, D. Hammon, R.G. Hoagland, Work hardening in rolled nanolayered metallic composites. Acta Mater. 53(1), 221–226 (2005)

    Article  Google Scholar 

  • M. Monavari, S. Sandfeld, M. Zaiser, Continuum representation of systems of dislocation lines: a general method for deriving closed-form evolution equations. J. Mech. Phys. Solids 95, 575–601 (2016)

    Article  MathSciNet  Google Scholar 

  • A.P. Moore, C. Deo, M.I. Baskes, M. Okuniewski, D.L. McDowell, Understanding the uncertainty of interatomic potentials’ parameters and formalism. Comput. Mater. Sci. 126, 308–320 (2017)

    Article  Google Scholar 

  • C. Motz, D. Weygan, J. Senger, P. Gumbsch, Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57(6), 1744–1754 (2009)

    Article  Google Scholar 

  • W. Muschik, Non-equilibrium Thermodynamics with Application to Solids (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  • S. Narayanan, D.L. McDowell, T. Zhu, Crystal plasticity model for BCC iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation. J. Mech. Phys. Solids 65, 54–68 (2014)

    Article  Google Scholar 

  • A.A. Nazarov, A.E. Romanov, R.Z. Valiev, Random disclination ensembles in ultrafine-grained materials produced by severe plastic deformation. Scr. Mater. 34(5), 729–734 (1996)

    Article  Google Scholar 

  • C.F.A. Negre, S. Plimpton, M.J. Cawkwell, R. Perriot, N. Aguirre, M.N. Niklasson, D. Perez, T. Germann, A. Thompson, B. Uberuaga, R.J. Zamora, M. Wood, A. Voter, Performing Density-Functional Tight-Binding Calculations with LAMMPS and the LATTE Library, Los Alamos National Laboratory (2017). http://lammps.sandia.gov/workshops/Aug17/pdf/negre.pdf. Accessed 20 Dec 2017

  • L.D. Nguyen, K.L. Baker, D.H. Warner, Atomistic predictions of dislocation nucleation with transition state theory. Phys. Rev. B 84, 024118 (2011)

    Article  Google Scholar 

  • W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    Article  MATH  Google Scholar 

  • J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  • S. Olarnrithinun, S.S. Chakravarthy, W.A. Curtin, Discrete dislocation modeling of fracture in plastically anisotropic metals. J. Mech. Phys. Solids 61, 1391–1406 (2013)

    Article  MathSciNet  Google Scholar 

  • OpenKIM online suite of open source tools for molecular simulation of materials. https://openkim.org/. Accessed 21 June 2016

    Google Scholar 

  • M. Ortiz, E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Ortiz, E.A. Repetto, L. Stainier, A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48, 2077–2114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Ovaska, L. Laurson, M.J. Alava, Quenched pinning and collective dislocation dynamics. Sci. Rep. 5, 10580 (2015)

    Article  Google Scholar 

  • J.H. Panchal, S.R. Kalidindi, D.L. McDowell, Key computational modeling issues in ICME. Comput. Aided Des. 45(1), 4–25 (2013)

    Article  Google Scholar 

  • W. Pantleon, Formation of disorientations in dislocation structures during plastic deformation. Solid State Phenom. 87, 73–92 (2002)

    Article  Google Scholar 

  • S. Papanikolaou, D.M. Dimiduk, W. Choi, J.P. Sethna, M.D. Uchic, C.F. Woodward, S. Zapperi, Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator. Nature 490, 517–521 (2012)

    Article  Google Scholar 

  • A. Patra, D.L. McDowell, Crystal plasticity-based constitutive modeling of irradiated bcc structures. Philos. Mag. 92(7), 861–887 (2012)

    Article  Google Scholar 

  • N.H. Paulson, M.W. Priddy, D.L. McDowell, S.R. Kalidindi, Reduced-order structure-property linkages for polycrystalline microstructures based on 2-Point statistics. Acta Mater. 129, 428–438 (2017)

    Article  Google Scholar 

  • F. Pavia, W.A. Curtin, Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS. Model. Simul. Mater. Sci. Eng. 23, 055002 (2015). (23p)

    Article  Google Scholar 

  • R. Peierls, The size of a dislocation. Proc. Phys. Soc. Lond. 52, 34–37 (1940)

    Article  Google Scholar 

  • R.C. Picu, R. Li, Z. Xu, Strain rate sensitivity of thermally activated dislocation motion across fields of obstacles of different kind. Mater. Sci. Eng. A 502(1–2), 164–171 (2009)

    Article  Google Scholar 

  • P.A. Pluchino, X. Chen, M. Garcia, L. Xiong, D.L. McDowell, Y. Chen, Dislocation migration across coherent phase interfaces in SiGe superlattices. Comput. Mater. Sci. 111, 1–6 (2016)

    Article  Google Scholar 

  • G. Po, M.S. Mohamed, T. Crosby, C. Erel, A. El-Azab, N. Ghoniem, Recent progress in discrete dislocation dynamics and its applications to micro plasticity. JOM 66(10), 2108–2120 (2014)

    Article  Google Scholar 

  • A. Prakash, R.A. Lebensohn, Simulation of micromechanical behavior of polycrystals: finite elements vs. fast Fourier transforms. Model. Simul. Mater. Sci. Eng. 17, 064010 (2009)

    Article  Google Scholar 

  • C.P. Przybyla, D.L. McDowell, Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100. Int. J. Plast. 26(3), 372–394 (2010)

    Article  MATH  Google Scholar 

  • C.P. Przybyla, D.L. McDowell, Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti-6Al-4V. Int. J. Plast. 27, 1871–1895 (2011)

    Article  MATH  Google Scholar 

  • S. Puri, A. Roy, A. Acharya, D. Dimiduk, Modeling dislocation sources and size effects at initial yield in continuum plasticity. J. Mech. Mater. Struct. 4(9), 1603–1618 (2009)

    Article  Google Scholar 

  • S. Qu, V. Shastry, W.A. Curtin, R.E. Miller, A finite-temperature dynamic coupled atomistic/discrete dislocation method. Model. Simul. Mater. Sci. Eng. 13(7), 1101–1118 (2005)

    Article  Google Scholar 

  • D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta Mater. 49(17), 3433–3441 (2001)

    Article  Google Scholar 

  • V. Racherla, J.L. Bassani, Strain burst phenomena in the necking of a sheet that deforms by non-associated plastic flow. Model. Simul. Mater. Sci. Eng. 15, S297–S311 (2007)

    Article  Google Scholar 

  • H. Rafii-Tabar, L. Hua, M. Cross, A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate. J. Phys. Condens. Matter 10(11), 2375–2387 (1998)

    Article  Google Scholar 

  • S.I. Rao, C. Woodward, T.A. Parthasarathy, O. Senkov, Atomistic simulations of dislocation behavior in a model FCC multicomponent concentrated solid solution alloy. Acta Mater. 134, 188–194 (2017)

    Article  Google Scholar 

  • J.R. Rice, Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  MATH  Google Scholar 

  • A.D.T. Rollett, R. Pokharel, R.A. Lebensohn, R.M. Suter, Comparison in 3D of experiments on, and simulations of plastic deformation of polycrystals. Microsc. Microanal. 21(S3), 2371–2372 (2015)

    Article  Google Scholar 

  • F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010)

    Article  Google Scholar 

  • A. Roy, A. Acharya, Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics. J. Mech. Phys. Solids 54, 1711–1743 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Roy, S. Puri, A. Acharya, Phenomenological mesoscopic dislocation mechanics, lower-order gradient plasticity and transport of mean excess dislocation density. Model. Simul. Mater. Sci. Eng. 15, S167–S180 (2007)

    Article  Google Scholar 

  • R.E. Rudd, J.Q. Broughton, Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B 58(10), R5893–R5896 (1998)

    Article  Google Scholar 

  • R.E. Rudd, J.Q. Broughton, Concurrent coupling of length scales in solid state systems. Phys. Status Solidi B 217(1), 251–291 (2000)

    Article  Google Scholar 

  • R.E. Rudd, A. Arsenlis, N.R. Barton, R.M. Cavallo, A.J. Comley, B.R. Maddox, J. Marian, H.-S. Park, S.T. Prisbrey, C.E. Wehrenberg, L. Zepeda-Ruiz, B.A. Remington, Multiscale strength (MS) models: their foundation, their successes, and their challenges. 18th APS-SCCM and 24th AIRAPT. J. Phys. Conf. Ser. 500, 112055 (2014)

    Article  Google Scholar 

  • S. Ryu, K. Kang, W. Cai, Predicting the dislocation nucleation rate as a function of temperature and stress. J. Mater. Res. 26(18), 2335–2354 (2011)

    Article  Google Scholar 

  • I. Ryu, W.D. Nix, W. Cai, Plasticity of bcc micropillars controlled by competition between dislocation multiplication and depletion. Acta Mater. 61, 3233–3241 (2013)

    Article  Google Scholar 

  • S. Sandfeld, T. Hochrainer, M. Zaiser, P. Gumbsch, Continuum modeling of dislocation plasticity: theory, numerical implementation and validation by discrete dislocation simulations. J. Mater. Res. 26, 623–632 (2011)

    Article  Google Scholar 

  • S. Saroukhani, L.D. Nguyen, K.W.K. Leung, C.V. Singh, D.H. Warner, Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles. J. Mech. Phys. Solids 90, 203–214 (2016)

    Article  MathSciNet  Google Scholar 

  • M. Schöberl, N. Zabaras, P.-S. Koutsourelakis, Predictive coarse-graining. J. Comput. Phys. 333, 49–77 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Sedlacek, J. Kratochvil, Variational approach to subgrain formation. Z. Metallkd. 96, 602–607 (2005)

    Article  Google Scholar 

  • M. Seefeldt, Disclinations in large-strain plastic deformation and work-Hardening. Rev. Adv. Mater. Sci. 2, 44–79 (2001)

    Google Scholar 

  • M. Seefeldt, P. Klimanek, Modeling of plastic deformation by means of dislocation-disclination dynamics. Solid State Phenom. 87, 93–112 (2002)

    Article  Google Scholar 

  • M. Seefeldt, L. Delannay, B. Peeters, S.R. Kalidindi, P. Van Houtte, A disclination-based model for grain subdivision. Mater. Sci. Eng. A 319–321, 192–196 (2001a)

    Article  Google Scholar 

  • M. Seefeldt, L. Delannay, B. Peeters, E. Aernoudt, P. Van Houtte, Modeling the initial stage of grain subdivision with the help of a coupled substructure and texture evolution algorithm. Acta Mater. 49, 2129–2143 (2001b)

    Article  Google Scholar 

  • A. Shahba, S. Ghosh, Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule. Int. J. Plast. 87, 48–68 (2016)

    Article  Google Scholar 

  • C. Shen, Y. Wang, Modeling dislocation network and dislocation–precipitate interaction at mesoscopic scale using phase field method. Int. J. Multiscale Comput. Eng. 1(1), 91–104 (2003)

    Article  Google Scholar 

  • C. Shen, J. Li, Y. Wang, Predicting structure and energy of dislocations and grain boundaries. Acta Mater. 74, 125–131 (2014)

    Article  Google Scholar 

  • V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips, M. Ortiz, Quasicontinuum models of interfacial structure and deformation. Phys. Rev. Lett. 80(4), 742–745 (1998)

    Article  Google Scholar 

  • V.B. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips, M. Ortiz, An adaptive finite element approach to atomic-scale mechanics – the quasicontinuum method. J. Mech. Phys. Solids 47(3), 611–642 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Shenoy, Y. Tjiptowidjojo, D.L. McDowell, Microstructure-sensitive modeling of polycrystalline IN 100. Int. J. Plast. 24, 1694–1730 (2008)

    Article  MATH  Google Scholar 

  • B. Shiari, R.E. Miller, W.A. Curtin, Coupled atomistic/discrete dislocation simulations of nanoindentation at finite temperature. ASME J. Eng. Mater. Technol. 127(4), 358–368 (2005)

    Article  Google Scholar 

  • L.E. Shilkrot, W.A. Curtin, R.E. Miller, A coupled atomistic/continuum model of defects in solids. J. Mech. Phys. Solids 50, 2085–2106 (2002a)

    Article  MATH  Google Scholar 

  • L.E. Shilkrot, R.E. Miller, W.A. Curtin, Coupled atomistic and discrete dislocation plasticity. Phys. Rev. Lett. 89, 025501–025501 (2002b)

    Article  Google Scholar 

  • L.E. Shilkrot, R.E. Miller, W.A. Curtin, Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J. Mech. Phys. Solids 52, 755–787 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Shimokawa, T. Kinari, S. Shintaku, Dislocation-grain boundary interactions by the Quasicontinuum method. Key Eng. Mater. 340–341, 973–978 (2007a)

    Article  Google Scholar 

  • T. Shimokawa, T. Kinari, S. Shintaku, Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations. Phys. Rev. B 75, 144108 (2007b)

    Article  Google Scholar 

  • J.Y. Shu, N.A. Fleck, E. Van der Giessen, A. Needleman, Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity. J. Mech. Phys. Solids 49(6), 1361–1395 (2001)

    Article  MATH  Google Scholar 

  • S. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • R.B. Sills, A. Aghaei, W. Cai, Advanced time integration algorithms for dislocation dynamics simulations of work hardening. Model. Simul. Mater. Sci. Eng. 24, 045019 (2016). (17pp)

    Article  Google Scholar 

  • C. Sobie, L. Capolungo, D.L. McDowell, E. Martinez, Modal analysis of dislocation vibration and reaction attempt frequency. Acta Mater. 134, 203–210 (2017a)

    Article  Google Scholar 

  • C. Sobie, L. Capolungo, D.L. McDowell, E. Martinez, Scale transition using dislocation dynamics and the nudged elastic band method. J. Mech. Phys. Solids 105, 161–178 (2017b)

    Article  Google Scholar 

  • C. Sobie, D.L. McDowell, E. Martinez, L. Capolungo, Thermal activation of dislocations in large scale obstacle bypass. J. Mech. Phys. Solids 105, 150–160 (2017c)

    Article  Google Scholar 

  • J. Song, W.A. Curtin, T.K. Bhandakkar, H.J. Gao, Dislocation shielding and crack tip decohesion at the atomic scale. Acta Mater. 58, 5933–5940 (2010)

    Article  Google Scholar 

  • M.R. Sørensen, A.F. Voter, Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112, 9599–9606 (2000)

    Article  Google Scholar 

  • D.E. Spearot, Atomistic Calculations of Nanoscale Interface Behavior in FCC Metals, PhD thesis, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 2005

    Google Scholar 

  • D.E. Spearot, K.I. Jacob, D.L. McDowell, Dislocation nucleation from bicrystal interfaces with dissociated structure. Int. J. Plast. 23, 143–160 (2007a)

    Article  MATH  Google Scholar 

  • D.E. Spearot, M.A. Tschopp, K.I. Jacob, D.L. McDowell, Tensile strength of h100i and h110i tilt bicrystal copper interfaces. Acta Mater. 55(2), 705–714 (2007b)

    Article  Google Scholar 

  • L. Stainier, A.M. Cuitino, M. Ortiz, A micromechanical model of hardening, rate sensitivity and thermal softening in bcc single crystals. J. Mech. Phys. Solids 50, 1511–1545 (2002)

    Article  MATH  Google Scholar 

  • S. Sun, V. Sundararaghavan, A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)

    Article  Google Scholar 

  • E.B. Tadmor, R.E. Miller, Modeling Materials: Continuum, Atomistic and Multiscale Techniques (Cambridge University Press, New York, 2011)

    Book  MATH  Google Scholar 

  • E.B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73(6), 1529–1563 (1996a)

    Article  Google Scholar 

  • E.B. Tadmor, R. Phillips, M. Ortiz, Mixed atomistic and continuum models of deformation in solids. Langmuir 12(19), 4529–4534 (1996b)

    Article  Google Scholar 

  • E.B. Tadmor, F. Legoll, W.K. Kim, L.M. Dupuy, R.E. Miller, Finite-temperature quasi-continuum. Appl. Mech. Rev. 65, 010803-1–010803-27 (2013)

    Article  Google Scholar 

  • N. Taheri-Nassaj, H.M. Zbib, On dislocation pileups and stress-gradient dependent plastic flow. Int. J. Plast. 74, 1–16 (2015)

    Article  Google Scholar 

  • A. Tallman, L.P. Swiler, Y. Wang, D.L. McDowell, Reconciled top-down and bottom-up hierarchical multiscale calibration of bcc Fe crystal plasticity. Int. J. Comput. Methods Eng. 15(6), 1–19 (2017)

    Google Scholar 

  • M. Tang, G. Hommes, S. Aubry, A. Arsenlis, ParaDiS-FEM Dislocation Dynamics Simulation Code Primer, 2011. LLNL-TR-501662:https://e-reports-ext.llnl.gov/pdf/519124.pdf. Accessed 21 June 2016

    Google Scholar 

  • V. Taupin, L. Capolungo, C. Fressengeas, M. Upadhyay, B. Beausir, A mesoscopic theory of dislocation and disclination fields for grain boundary-mediated crystal plasticity. Int. J. Solids Struct. 71, 277–290 (2015)

    Article  Google Scholar 

  • G.I. Taylor, Plastic strain in metals. J. Inst. Met. 62(1), 307–324 (1938)

    Google Scholar 

  • I. Tembhekar, J.S. Amelang, L. Munk, D.M. Kochmann, Automatic adaptivity in the fully nonlocal quasicontinuum method for coarse-grained atomistic simulations. Int. J. Numer. Methods Eng. 110, 878–900 (2017)

    Article  MathSciNet  Google Scholar 

  • S. Tiwari, Methods of Atomistic Input into the Initial Yield and Plastic Flow Criteria for Nanoscrystalline Materials. PhD Thesis, School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 2014

    Google Scholar 

  • S. Tiwari, G.J. Tucker, D.L. McDowell, Simulated defect growth avalanches during deformation of nanocrystalline copper. Philos. Mag. 93(5), 478–498 (2013)

    Article  Google Scholar 

  • M.A. Tschopp, D.L. McDowell, Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminum. Philos. Mag. 87(22), 3147–3173 (2007a)

    Article  Google Scholar 

  • M.A. Tschopp, D.L. McDowell, Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper. Appl. Phys. Lett. 90, 121911–121916 (2007b)

    Article  Google Scholar 

  • M.A. Tschopp, D.E. Spearot, D.L. McDowell (2008a) Influence of grain boundary structure on dislocation nucleation in FCC metals, in Dislocations in Solids, A tribute to F.R.N. Nabarro, J.P. Hirth, Elsevier, 14, 43–139.

    Google Scholar 

  • M.A. Tschopp, G.J. Tucker, D.L. McDowell, Atomistic simulations of dislocation nucleation in copper grain boundaries under uniaxial tension and compression. Comput. Mater. Sci. 44(2), 351–362 (2008b)

    Article  Google Scholar 

  • M.A. Tschopp, S.P. Coleman, D.L. McDowell, Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other FCC metals). Integr. Mater. Manuf. Innov. 4, 11 (2015). https://doi.org/10.1186/s40192-015-0040-1

    Article  Google Scholar 

  • G.J. Tucker, J.A. Zimmerman, D.L. McDowell, Shear deformation kinematics of bicrystalline grain boundaries in atomistic simulations. Model. Simul. Mater. Sci. Eng. 18, 015002 (2010)

    Article  Google Scholar 

  • G.J. Tucker, J.A. Zimmerman, M.D. DL, Continuum metrics for deformation and microrotation from atomistic simulations: Application to grain boundaries. Int. J. Eng. Sci. 49, 1424–1434 (2011)

    Article  MATH  Google Scholar 

  • G.J. Tucker, S. Tiwari, J.A. Zimmerman, D.L. McDowell, Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics. J. Mech. Phys. Solids 60, 471–486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • M.V. Upadhyay, L. Capolungo, V. Taupin, C. Fressengeas, Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinations. Philos. Mag. 93(7), 794–832 (2013)

    Article  Google Scholar 

  • E. Van der Giessen, A. Needleman, Discrete dislocation plasticity: a simple planar model. Model. Simul. Mater. Sci. Eng. 3, 689–735 (1995)

    Article  Google Scholar 

  • E.M. Viatkina, W.A.M. Brekelmans, M.G.D. Geers, Modelling of the internal stress in dislocation cell structures. Eur. J. Mech. A/Solids 26, 982–998 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Volterra, Sur l’equilibre des carps elastiques multiplement connexes. Ann. Ecole Norm. Sup. Paris 24, 401–517 (1907)

    Article  MATH  Google Scholar 

  • A.F. Voter, A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106, 4665–4667 (1997)

    Article  Google Scholar 

  • A.F. Voter, Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57, 13985–13988 (1998)

    Article  Google Scholar 

  • G.Z. Voyiadjis, R.K. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)

    Article  MATH  Google Scholar 

  • G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition. J. Comput. Phys. 190, 249–274 (2003)

    Article  MATH  Google Scholar 

  • D. Walgraef, E.C. Aifantis, On the formation and stability of dislocation patterns, I-III. Int. J. Eng. Sci. 12, 1351–1372 (1985)

    Article  MATH  Google Scholar 

  • M. Wallin, W.A. Curtin, M. Ristinmaa, A. Needleman, Multi-scale plasticity modeling: Coupled discrete dislocation and continuum crystal plasticity. J. Mech. Phys. Solids 56, 3167–3180 (2008)

    Article  MATH  Google Scholar 

  • Y.Z. Wang, L.Q. Chen, Simulation of microstructural evolution using the field method, in Methods in Materials Research, ed. by E.N. Kaufmann (Wiley, New York, (2000), Chapters 2a.3.1–2a.3.23

    Google Scholar 

  • Y. Wang, J. Li, Phase field modeling of defects and deformation. Acta Mater. 58(4), 1212–1235 (2010)

    Article  Google Scholar 

  • J. Wang, A. Misra, An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr. Opinion Solid State Mater. Sci. 15(1), 20–28 (2011)

    Article  Google Scholar 

  • Y.U. Wang, Y.M. Jin, A.M. Cuitino, A.G. Khachaturyan, Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations. Acta Mater. 49(10), 1847–1857 (2001)

    Article  Google Scholar 

  • Y.U. Wang, Y.M. Jin, A.G. Khachaturyan, Dislocation dynamics – phase field, in Handbook of Materials Modeling S. Yip) (2005, Chapter 7.12, pp. 2287–2305)

    Chapter  Google Scholar 

  • W. Wang, N. Ghoniem, L.S.R. Swaminaryan, A parallel algorithm for 3D dislocation dynamics. J. Comput. Phys. 219, 608–621 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Wang, L. Capolungo, B. Clausen, C.N. Tome, A crystal plasticity model based on transition state theory. Int. J. Plast. 93, 251–268 (2017)

    Article  Google Scholar 

  • E. Weinan, Z. Huang, Matching conditions in atomistic-continuum modeling of materials. Phys. Rev. Lett. 8713(13), 135501 (2001)

    Google Scholar 

  • S.P. Xia, T. Belytschko, A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193, 1645–1669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Xia, A. El-Azab, Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Model. Simul. Mater. Sci. Eng. 23(5), 55009–55034 (2015)

    Article  Google Scholar 

  • S. Xia, J. Belak, A. El-Azab, The discrete-continuum connection in dislocation dynamics: I. Time coarse graining of cross slip. Model. Simul. Mater. Sci. Eng. 24, 075007 (2016). 22p

    Article  Google Scholar 

  • L. Xiong, G.J. Tucker, D.L. McDowell, Y. Chen, Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59, 160–177 (2011)

    Article  MATH  Google Scholar 

  • L. Xiong, Q. Deng, G.J. Tucker, D.L. McDowell, Y. Chen, A concurrent scheme for passing dislocations from atomistic to continuum regions. Acta Mater. 60(3), 899–913 (2012a)

    Article  Google Scholar 

  • L. Xiong, Q. Deng, G.J. Tucker, D.L. McDowell, Y. Chen, Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int. J. Plast. 38, 86–101 (2012b)

    Article  Google Scholar 

  • L. Xiong, D.L. McDowell, Y. Chen, Sub-THz phonon drag on dislocations by coarse-grained atomistic simulations. Int. J. Plast. 55, 268–278 (2014a)

    Article  Google Scholar 

  • L. Xiong, X. Chen, D.L. McDowell, Y. Chen, Predicting phonon properties of 1D polyatomic crystals through the concurrent atomistic-continuum simulations. Arch. Appl. Mech., special issue in Honor of Professor G. Maugin 84, 1665–1675 (2014b)

    Google Scholar 

  • L. Xiong, S. Xu, D.L. McDowell, Y. Chen, Concurrent atomistic-continuum simulations of dislocation-void interactions in FCC crystals. Int. J. Plast. 65, 33–42 (2015)

    Article  Google Scholar 

  • L. Xiong, J. Rigelesaiyin, X. Chen, S. Xu, D.L. McDowell, Y. Chen, Coarse-grained elastodynamics of fast moving dislocations. Acta Mater. 104, 143–155 (2016)

    Article  Google Scholar 

  • S. Xu, R. Che, L. Xiong, Y. Chen, D.L. McDowell, A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int. J. Plast. 72, 91–126 (2015)

    Article  Google Scholar 

  • S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Sequential slip transfer of mixed character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic-continuum study. npg Comput. Mater. 2, 15016 (2016a). https://doi.org/10.1038/npjcompumats.2015.16

    Article  Google Scholar 

  • S. Xu, L. Xiong, Q. Deng, D.L. McDowell, Mesh refinement schemes for the concurrent atomistic-continuum method. Int. J. Solids Struct. 90, 144–152 (2016b)

    Article  Google Scholar 

  • S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni. Acta Mater. 122, 412–419 (2017a)

    Article  Google Scholar 

  • S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Comparing EAM potentials to model slip transfer of sequential mixed character dislocations across two symmetric tilt grain boundaries in Ni. JOM 69(5), 814–821 (2017b)

    Article  Google Scholar 

  • H. Yasin, H.M. Zbib, M.A. Khaleel, Size and boundary effects in discrete dislocation dynamics: coupling with continuum finite element. Mater. Sci. Eng. A 309–310, 294–299 (2001)

    Article  Google Scholar 

  • J. Yin, D.M. Barnett, S.P. Fitzgerald, W. Cai, Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions. Model. Simul. Mater. Sci. Eng. 20, 045015 (2012)

    Article  Google Scholar 

  • W. Yu, Z. Wang, Interactions between edge lattice dislocations and Σ11 symmetrical tilt grain boundaries in copper: a quasi-continuum method study. Acta Mater. 60(13–14), 5010–5021 (2012)

    Article  Google Scholar 

  • W.S. Yu, Z.Q. Wang, Interactions between edge lattice dislocations and Sigma 11 symmetrical tilt grain boundary: comparisons among several FCC metals and interatomic potentials. Philos. Mag. 94, 2224–2246 (2014)

    Article  Google Scholar 

  • M. Zaiser, Statistical modeling of dislocation systems. Mater. Sci. Eng. A 309–310, 304–315 (2001)

    Article  Google Scholar 

  • M. Zaiser, S. Sandfeld, Scaling properties of dislocation simulations in the similitude regime. Model. Simul. Mater. Sci. Eng. 22, 065012 (2014)

    Article  Google Scholar 

  • H.M. Zbib, T.D. de la Rubia, A multiscale model of plasticity. Int. J. Plast. 18(9), 1133–1163 (2002)

    Article  MATH  Google Scholar 

  • H.M. Zbib, M. Rhee, J.P. Hirth, On plastic deformation and the dynamics of 3d dislocations. Int. J. Mech. Sci. 40(2), 113–127 (1998)

    Article  MATH  Google Scholar 

  • H.M. Zbib, T.D. de la Rubia, V. Bulatov, A multiscale model of plasticity based on discrete dislocation dynamics. ASME J. Eng. Mater. Technol. 124(1), 78–87 (2002)

    Article  Google Scholar 

  • H.M. Zbib, C.T. Overman, F. Akasheh, D. Bahr, Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int. J. Plast. 27, 1618–1639 (2011)

    Article  MATH  Google Scholar 

  • X. Zhang, Field Dislocation Mechanics with Applications in Atomic, Mesoscopic and Tectonic Scale Problems. Dissertations, Carnegie Mellon University Paper 585, 2015. http://repository.cmu.edu/cgi/viewcontent.cgi?article=1624&context=dissertations

  • J. Zhang, S. Chakraborty, S. Ghosh, Concurrent atomistic-continuum model for developing self-consistent modeling of crystalline solids with cracks. Int. J. Multiscale Comput. Eng. 15(2), 99–119 (2017)

    Article  Google Scholar 

  • T. Zhu, J. Li, Ultra-strength Materials. Prog. Mater. Sci. 55(7), 710–757 (2010)

    Article  Google Scholar 

  • T. Zhu, D.L. McDowell, Coarse graining: time scaling from unit processes. IIMEC Summer School on Computational Materials Science Across Scales, Texas A&M, July 29–30, 2015

    Google Scholar 

  • T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. U S A 104, 3031–3036 (2007)

    Article  Google Scholar 

  • T. Zhu, L. Li, A. Samanta, A. Leach, K. Gall, Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008)

    Article  Google Scholar 

  • T. Zhu, J. Li, S. Yip, Atomistic Reaction Pathway Sampling: The Nudged Elastic Band Method and Nanomechanics Applications. Nano and Cell Mechanics: Fundamentals and Frontiers, vol. 1, ed. by H.D. Espinosa, G. Bao (Wiley, Chichester, West Sussex, (2013), Chapter 12

    Google Scholar 

  • J.A. Zimmerman, H. Gao, F.F. Abraham, Generalized stacking fault energies for embedded atom FCC metals. Model. Simul. Mater. Sci. Eng. 8(2), 103–116 (2000)

    Article  Google Scholar 

  • J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton, S.M. Foiles, Surface step effects on nanoindentation. Phys. Rev. Lett. 8716, 165507 (2001)

    Article  Google Scholar 

Download references

Acknowledgment

Thet author is grateful for the support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing at Georgia Tech, as well as prior support in pursuit of various aspects of metal plasticity from AFOSR, ONR (N00014-05-C-024, N00014-17-1-2036), ARO, Eglin AFB, DARPA, NAVAIR, GE, Pratt & Whitney, Boeing, QuesTek, Simulia, the NSF-funded PSU-GT Center for Computational Materials Design (IIP-0541678, IIP-1034968), and NSF Grants CMMI-1232878, CMMI-0758265, CMMI-1030103, and CMMI-1333083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. McDowell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McDowell, D.L. (2019). Multiscale Modeling of Interfaces, Dislocations, and Dislocation Field Plasticity. In: Mesarovic, S., Forest, S., Zbib, H. (eds) Mesoscale Models. CISM International Centre for Mechanical Sciences, vol 587. Springer, Cham. https://doi.org/10.1007/978-3-319-94186-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94186-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94185-1

  • Online ISBN: 978-3-319-94186-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics