Skip to main content

Modeling Dislocation Nucleation in Nanocrystals

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

  • 3454 Accesses

Abstract

Plasticity in nanocrystals is observed to be dominated by dislocation nucleation, as these volumes are typically too small to support a significant population of defects. Thus, it is imperative that accurate models of dislocation nucleation be developed to predict the strength of these novel structures. In this chapter, a set of multiscale models are introduced to address dislocation nucleation that spans both length- and time scales. Atomistic models are used to parameterize the activation energy associated with dislocation nucleation as a function of stress and/or strain. These results can be combined with transition state theory to predict dislocation nucleation with relative accuracy as a function of both temperature and time. Continuum models of dislocation nucleation can also be used, in conjunction with parameters from atomistic simulations, to extend the atomistic results to addition geometries, sizes, and materials. These models can then be integrated into mesoscale models of plasticity, such as dislocation dynamics, that are able to evolve the dislocation structures providing a complete picture of plasticity in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Aubry, K. Kang, S. Ryu, W. Cai, Energy barrier for homogeneous nucleation: Comparing atomistic and continuum models. Scr. Mater. 64, 1043 (2011)

    Article  Google Scholar 

  2. S. Brochard, P. Hirel, L. Pizzagalli, J. Godet, Elastic limit for surface step dislocation nucleation in face-centered cubic metals: temperature and step height dependence. Acta Mater. 58, 4182–4190 (2010)

    Article  Google Scholar 

  3. A. Cao, E. Ma, Sample shape and temperature strongly influence the yield strength of metallic nanopillars. Acta Mater. 56 (17), 4816–4828 (2008)

    Article  Google Scholar 

  4. A. Cao, Y. Wei, Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Phys. Rev. B 74, 214108 (2006)

    Article  Google Scholar 

  5. J. Diao, K. Gall, M. Dunn, Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656–660 (2003)

    Article  Google Scholar 

  6. J. Diao, K. Gall, M. Dunn, Surface stress driven reorientation of gold nanowires. Phys. Rev. B 70, 075413 (2004)

    Article  Google Scholar 

  7. J. Diao, K. Gall, M. Dunn, Yield strength asymmetry in metal nanowires. Nano Lett. 4 (10), 1863–1867 (2004)

    Article  Google Scholar 

  8. J. Diao, K. Gall, M. Dunn, J. Zimmerman, Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643–653 (2006)

    Article  Google Scholar 

  9. R. Farraro, R.B. Mclellan, Temperature dependence of the young’s modulus and shear modulus of pure nickel, platinum, and molybdenum. Metall. Trans. A 8 (10), 1563–1565 (1977)

    Article  Google Scholar 

  10. K. Gall, J. Diao, M. Dunn, The strength of gold nanowires. Nano Lett. 4 (12), 2431–2436 (2004)

    Article  Google Scholar 

  11. J. Greer, J.D. Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. (2011). doi:10.1016/j.pmatsci.2011.01.005

    Google Scholar 

  12. J.R. Greer, W.C. Oliver, W.D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 52, 1821–1830 (2005)

    Article  Google Scholar 

  13. M.E. Gurtin, A.I. Murdoch, Surface stress in solids. Int. J. Solids Struct. 14 (6), 431–440 (1978)

    Article  Google Scholar 

  14. P. Hänggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62 (2), 251 (1990)

    Google Scholar 

  15. S. Hara, S. Izumi, S. Sakai, Reaction pathway analysis for dislocation nucleation from a Ni surface step. J. Appl. Phys. 106, 093507 (2009)

    Article  Google Scholar 

  16. K.G. Harold Park, J. Zimmerman, Deformation of FCC nanowires by twinning and slip. J. Mech. Phys. Solids 54, 1862–1881 (2006)

    Article  Google Scholar 

  17. G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)

    Article  Google Scholar 

  18. G. Henkelman, G. Johannesson, H. Jónsson, Methods for finding saddle points and minimum energy paths, in Progress on Theoretical Chemistry and Physics, ed. by S.D. Schwartz (Kluwer Academics, Dordrecht, 2000), pp. 269–300

    Google Scholar 

  19. P. Hirel, J. Godet, S. Brochard, L. Pizzagalli, P. Beauchamp, Determination of activation parameters for dislocation formation from a surface in fcc metals by atomistic simulations. Phys. Rev. B 78, 064109 (2008)

    Article  Google Scholar 

  20. J. Hirth, J. Lothe, Theory of Dislocations (Krieger, Malabar, FL, 1982)

    Google Scholar 

  21. A.T. Jennings, J. Li, J.R. Greer, Emergence of strain-rate sensitivity in Cu nanopillars: transition from dislocation multiplication to dislocation nucleation. Acta Materialia 59 (14), 5627–5637 (2011)

    Article  Google Scholar 

  22. A.T. Jennings, C.R. Weinberger, S.W. Lee, Z.H. Aitken, L. Meza, J.R. Greer, Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Mater. 61 (6), 2244–2259 (2013)

    Article  Google Scholar 

  23. C. Ji, H.S. Park, Geometric effects on the inelastic deformation of metal nanowires. Appl. Phys. Lett. 89, 181916 (2006)

    Article  Google Scholar 

  24. C. Ji, H.S. Park, The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires. Nanotechnology 18 (30), 305704 (2007)

    Google Scholar 

  25. C. Ji, H. Park, The effect of defects on the mechanical behavior of silver shape memory nanowires. J. Comput. Theor. Nanosci. 4 (3), 578 (2007)

    Google Scholar 

  26. J.W. Jiang, A.M. Leach, K. Gall, H.S. Park, T. Rabczuk, A surface stacking fault energy approach to predicting defect nucleation in surface-dominated nanostructures. J. Mech. Phys. Solids 61 (9), 1915–1934 (2013)

    Article  Google Scholar 

  27. K. Kang, Atomistic modeling of fracture mechanisms in semiconductor nanowires under tension. Ph.D. Thesis, Stanford University, 2010

    Google Scholar 

  28. K. Kang, W. Cai, Brittle and ductile fracture of semiconductor nanowires–molecular dynamics simulations. Philos. Mag. 87 (14–15), 2169–2189 (2007)

    Article  Google Scholar 

  29. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998)

    Article  Google Scholar 

  30. J.Y. Kim, J.R. Greer, Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57 (17), 5245–5253 (2009)

    Article  Google Scholar 

  31. U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1–289 (1975)

    Article  Google Scholar 

  32. J. Kollar, L. Vitos, J.M. Osorio-Guillen, R. Ahuja, Calculation of surface stress for fcc transition metals. Phys. Rev. B 68, 245417 (2003)

    Article  Google Scholar 

  33. O. Kraft, P.A. Gruber, R. Monig, D. Weygand, Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010)

    Article  Google Scholar 

  34. A. Leach, M. McDowell, K. Gall, Deformation of top-down and bottom-up silver nanowires. Adv. Funct. Mater. 17, 43–53 (2007)

    Article  Google Scholar 

  35. C. Li, G. Xu, Critical conditions for dislocation nucleation at surface steps. Philos. Mag. 86, 2957–2970 (2007)

    Article  Google Scholar 

  36. W. Liang, M. Zhou, Response of copper nanowires in dynamic tensile deformation. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 218 (6), 599–606 (2004)

    Article  Google Scholar 

  37. W. Liang, M. Zhou, Atomistic simulations reveal shape memory of fcc metal nanowires. Phys. Rev. B 73, 115409 (2006)

    Article  Google Scholar 

  38. Y. Lu, C. Peng, Y. Ganesan, J.Y. Huang, J. Lou, Quantitative in situ TEM tensile testing of an individual nickel nanowire. Nanotechnology 22 (35), 355702 (2011)

    Google Scholar 

  39. Y. Lu, J. Song, J.Y. Huang, J. Lou, Fracture of sub-20 nm ultrathin gold nanowires. Adv. Funct. Mater. 21, 3982–3989 (2011)

    Google Scholar 

  40. J. Marian, J. Knap, Breakdown of self-similar hardening behavior in au nanopillar microplasticity. Int. J. Multiscale Comput. Eng. 5, 287–294 (2007)

    Article  Google Scholar 

  41. R.J. Needs, M.J. Godfrey, M. Mansfield, Theory of surface stress and surface reconstruction. Surf. Sci. 242, 215–221 (1991)

    Article  Google Scholar 

  42. J. Neighbours, G. Alers, Elastic constants of silver and gold. Phys. Rev. 111 (3), 707 (1958)

    Google Scholar 

  43. A. Ngan, L. Zhuo, P. Wo, Size dependence and stochastic nature of yield strength of micron-sized crystals: a case study on Ni3Al. Proc. R. Soc. 462, 1661 (2006)

    Article  Google Scholar 

  44. L. Nguyen, D. Warner, Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions. Phys. Rev. Lett. 108 (3), 035501 (2012)

    Google Scholar 

  45. L. Nguyen, K. Baker, D. Warner, Atomistic predictions of dislocation nucleation with transition state theory. Phys. Rev. B 84 (2), 024118 (2011)

    Google Scholar 

  46. W. Overton Jr., J. Gaffney, Temperature variation of the elastic constants of cubic elements. i. Copper. Phys. Rev. 98 (4), 969 (1955)

    Google Scholar 

  47. H.S. Park, J.A. Zimmerman, Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 054106 (2005)

    Article  Google Scholar 

  48. H. Park, K. Gall, J. Zimmerman, Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 95 (25), 255504 (2005)

    Google Scholar 

  49. P. Pechukas, Transition state theory. Annu. Rev. Phys. Chem. 32 (1), 159–177 (1981)

    Article  Google Scholar 

  50. E. Rabkin, H. Nam, D. Srolovitz, Atomistic simulation of the deformation of gold nanopillars. Acta Mater. 55 (6), 2085–2099 (2007)

    Article  Google Scholar 

  51. G. Richter, K. Hillerich, D. Gianola, R. Monig, O. Kraft, C. Volkert, Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009)

    Article  Google Scholar 

  52. S. Ryu, K. Kang, W. Cai, Entropic effect on the rate of dislocation nucleation. Proc. Natl. Acad. Sci. USA 108, 5174 (2011)

    Article  Google Scholar 

  53. S. Ryu, K. Kang, W. Cai, Predicting the dislocation nucleation rate as a function of temperature and stress. J. Mater. Res. 26 (18), 2335–2354 (2011)

    Article  Google Scholar 

  54. E. Schmid, W. Boas, Plasticity of Crystals (F. A. Hughes Co., London, 1950)

    Google Scholar 

  55. A. Sedlmayr, E. Bitzek, D.S. Gianola, G. Richter, R. Mönig, O. Kraft, Existence of two twinning-mediated plastic deformation modes in au nanowhiskers. Acta Mater. 60 (9), 3985–3993 (2012)

    Article  Google Scholar 

  56. J.H. Seo, Y. Yoo, N.Y. Park, S.W. Yoon, H. Lee, S. Han, S.W. Lee, T.Y. Seong, S.C. Lee, K.B. Lee et al., Superplastic deformation of defect-free au nanowires via coherent twin propagation. Nano Lett. 11 (8), 3499–3502 (2011)

    Article  Google Scholar 

  57. J.H. Seo, H.S. Park, Y. Yoo, T.Y. Seong, J. Li, J.P. Ahn, B. Kim, I.S. Choi, Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett. 13, 5112–5116 (2013)

    Article  Google Scholar 

  58. J. Tallon, A. Wolfenden, Temperature dependence of the elastic constants of aluminum. J. Phys. Chem. Solids 40 (11), 831–837 (1979)

    Article  Google Scholar 

  59. M.D. Uchic, P.A. Shade, D. Dimiduk, Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009)

    Article  Google Scholar 

  60. J. Wang, H. Huang, Novel deformation mechanism of twinned nanowires. Appl. Phys. Lett. 88, 203112 (2006)

    Article  Google Scholar 

  61. J. Wang, F. Sansoz, J. Huang, Y. Liu, S. Sun, Z. Zhang, S.X. Mao, Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 4, 1742 (2013)

    Article  Google Scholar 

  62. E. Weinan, W. Ren, E. Vanden-Eijnden, Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys. 126, 164103 (2007)

    Article  Google Scholar 

  63. C.R. Weinberger, The fundamentals of plastic deformation: several case studies of plasticity in confined volumes. Sandia Report 7736 (2012)

    Google Scholar 

  64. C.R. Weinberger, W. Cai, Plasticity in metallic nanowires. J. Mater. Chem. 22, 3277 (2012)

    Article  Google Scholar 

  65. C.R. Weinberger, A.T. Jennings, K. Kang, J.R. Greer, Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires. J. Mech. Phys. Solids 60 (1), 84–103 (2012)

    Article  Google Scholar 

  66. Y. Xiang, H. Wei, P. Ming, W. E,: A generalized Peierls-Nabarro model for curved dislocations and cores structures of dislocation loops in Al and Cu. Acta Mater. 56, 1447–1460 (2008)

    Google Scholar 

  67. G. Xu, A.S. Argon, Homogeneous nucleation of dislocation loops under stress in perfect crystals. Philos. Mag. Lett. 80, 605 (2000)

    Article  Google Scholar 

  68. G. Xu, C. Zhang, Analysis of dislocation nucleation from a crystal surface based on the Peierls-Nabarro dislocation model. J. Mech. Phys. Solids 51, 1371–1394 (2003)

    Article  Google Scholar 

  69. L. Zepeda-Ruiz, B. Sadigh, J. Biener, A. Hodge, A. Hamza, Mechanical response of freestanding au nanopillars under compression. Appl. Phys. Lett. 91, 101907 (2007)

    Article  Google Scholar 

  70. Y. Zhang, H. Huang, Do twin boundaries always strengthen metal nanowires? Nanoscale Res. Lett. 4, 34–38 (2009)

    Article  Google Scholar 

  71. H. Zheng, A. Cao, C.R. Weinberger, J.Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, S.X. Mao, Discrete plasticity in sub-10 nm au crystals. Nat. Commun. 1, 144 (2010)

    Google Scholar 

  72. T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008)

    Article  Google Scholar 

  73. Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B.J. Wiley, Z.L. Wang, Size effects on elasticity, yielding, and fracture of silver nanowires. Phys. Rev. B 85, 045443 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Weinberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guziewski, M., Yu, H., Weinberger, C.R. (2016). Modeling Dislocation Nucleation in Nanocrystals. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_12

Download citation

Publish with us

Policies and ethics