Skip to main content

Manipulating Programmed Cell Death Pathways for Enhancing Salinity Tolerance in Crops

  • Chapter
  • First Online:
Salinity Responses and Tolerance in Plants, Volume 2

Abstract

One of the key challenges for researchers is to obtain a deeper understanding of the strategies and mechanisms of plant adaptation to environmental stress that help overcome the limitations associated with climate change and loss of biodiversity. In this context, tolerance to salinity stress is one of the main abiotic factors constraining the plant growth, and production is of special importance. Programmed cell death (PCD) plays a protective role against biotic and abiotic stresses. PCD might play an important role in the maintenance of normal tissue homeostasis, regulation of cell metabolism, and remodeling of tissues after injury and infection as well as the elimination of damaged cells. Salinity stress induces an alteration in chloroplasts, mitochondria, cytoplasm, plasma membrane (PM), endoplasmic reticulum (ER), Golgi apparatus, vesicle formation and trafficking, and vacuoles formation which may result in PCD in plants. The overexpression of pro-survival genes including anti-apoptotic genes and those involved in suppression of apoptosis genes in the transgenic plants to enhance abiotic stress tolerance has been the subject of a number of investigations, particularly in the context of salinity tolerance. Therefore, the development of transformed plants for resistance to apoptosis could be an effective approach to improving salinity tolerance, while the use of complementary techniques like RNA-interfering (RNAi)-mediated gene knockdowns has been shown to be an interesting and appealing alternative. The objective of this review is to summarize the current state of knowledge on improving salinity tolerance in crop plants through manipulation of PCD pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

Apoptosis-inducing factor

AL-PCD:

Apoptotic-like PCD

ASPP:

Apoptosis-stimulating proteins of p53

ACD:

Autophagic cell death

BAG:

Bcl-2-associated athanogene

Bak:

BCL-2 antagonist/killer-1

Bax:

Bcl-2-associated X protein

Bcl-2:

B-cell lymphoma2

Bcl-xl:

BCL-2-like 1

Ca2+ :

Calcium ion

ER:

Endoplasmic reticulum

FB1:

Fumonisin B1

GORK:

Guard cell outward-rectifying K+ channel

H2O2 :

Hydrogen peroxide

HR:

Hypersensitivity

IAP:

Inhibitor of apoptosis

K+ :

Potassium ion

MAPK:

Mitogen-activated protein kinase

Mcl-1:

Myeloid cell leukemia-1

Na+ :

Sodium ion

NADPH:

Nicotinamide adenine dinucleotide phosphate hydrogen

PM:

Plasma membrane

RNAi:

RNA interfering

ROS:

Reactive oxygen species

PCD:

Programmed cell death

PLC:

Phospholipase C

SKOR:

Outward-rectifying K+ channel

VPE:

Vacuolar processing enzyme

References

  • Affenzeller MJ, Darehshouri A, Andosch A, Lu C, Lütz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60:939–954

    Article  PubMed  PubMed Central  Google Scholar 

  • Aken O, Breusegem F (2015) Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci 20:754–766

    Article  PubMed  CAS  Google Scholar 

  • Ambastha V, Sopory SK, Tiwari BS, Tripathy BC (2017) Photo-modulation of programmed cell death in rice leaves triggered by salinity. Apoptosis 22:41–56

    Article  PubMed  CAS  Google Scholar 

  • Anderson MA, Deng J, Seymour JF, Tam C, Kim SY, Fein J, Yu L, Brown JR, Westerman D, Si EG, Majewski IJ, Segal D, Enschede SLH, Huang DCS, Davids MS, Letai A, Roberts AW (2016) The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood 127:3215–3224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ariño-Estrada G, Mitchell GS, Saha P, Arzani A, Cherry SR, Blumwald E, Kyme AZ (2017) Imaging salt transport in plants using PET: a feasibility study. IEEE nuclear science symposium and medical imaging conference 2017 (IEEE NSS/MIC 2017)

    Google Scholar 

  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44:373–383

    Article  CAS  Google Scholar 

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189

    Article  CAS  Google Scholar 

  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  PubMed  CAS  Google Scholar 

  • Bagniewska-Zadworna A, Arasimowicz-Jelonek M (2016) The mystery of underground death: cell death in roots during ontogeny and in response to environmental factors. Plant Biol 18:171–184

    Article  PubMed  CAS  Google Scholar 

  • Bahieldin A, Atef A, Edris S, Gadalla NO, Ali HM, Hassan SM, Al-Kordy MA, Ramadan AM, Makki RM, Al-Hajar ASM, El-Domyati FM (2016) Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant. BMC Plant Biol 16:216. https://doi.org/10.1186/s12870-016-0908-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balk J, Leaver CJ, McCabe P (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463:151–154

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee L, Singh PK, Singh S, Nandi AK (2015) Down-regulation of rice serpin gene OsSRP-LRS exaggerates stress-induced cell death. J Plant Biol 58:327–332

    Article  CAS  Google Scholar 

  • Bialik S, Zalckvar E, Ber Y, Rubinstein AD, Kimchi A (2010) Systems biology analysis of programmed cell death. Trends Biochem Sci 35:556–564

    Article  PubMed  CAS  Google Scholar 

  • Biswas MS, Mano J (2015) Lipid peroxide-derived short-chain carbonyls mediate hydrogen peroxide-induced and salt-induced programmed cell death in plants. Plant Physiol 168:885–898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Lee SN, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF (2010) Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death. Plant Physiol 154:1158–1171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cande C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Sun S, Wang C, Li Y, Liang Y, An F, Li C, Dong H, Yang X, Zhang J, Zuo J (2009a) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19:1377–1387

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W (2009b) Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol Biochem 47:407–415

    Article  PubMed  CAS  Google Scholar 

  • Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Autreaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  PubMed  CAS  Google Scholar 

  • Dauphinee AN, Warner S, Gunawardena AH (2014) A comparison of induced and developmental cell death morphologies in lace plant (Aponogeton madagascariensis ) leaves. BMC Plant Biol 14:389

    Article  PubMed  PubMed Central  Google Scholar 

  • De Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V (2014) Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol 171:696–707

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270

    Article  PubMed  CAS  Google Scholar 

  • Deng M, Bian H, Xie Y, Kim Y, Wang W, Lin E, Zeng Z, Guo F, Pan J, Han N, Wang J, Qian Q, Zhu M (2011) Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. FEBS J 278:4797–4810

    Article  PubMed  CAS  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci U S A 98:6957–6962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doyle SM, Diamond M, McCabe PF (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482

    Article  PubMed  CAS  Google Scholar 

  • Fidalgo F, Santos A, Santos I, Salema R (2004) Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann Appl Biol 145:185–192

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signaling: what’s in pROSpect? Plant Cell Environ 39:951–964

    Article  PubMed  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, BiaÅ‚asek M, Suzuki N, Górecka M, Devireddy A, Karpinski S, Mittler R (2016) ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green DR (2011) Means to an end. Apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hamed-laouti IB, Arbelet-bonnin D, De Bont L, Biligui B, Gakière B, Abdelly C, Ben Hamed K (2016) Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidopsis thaliana. Plant Sci 247:49–59

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Yamada K, Goto-Yamada S, Hara-Nishimura I (2015) Vacuolar processing enzyme in plant programmed cell death. Front Plant Sci 6:234

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  CAS  Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Nat Acad Sci USA 92:3903–3907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoang TML, Williams B, Khanna H, Dale J, Mundree SG (2014) Physiological basis of salt stress tolerance in rice expressing the anti-apoptotic gene SfIAP. Funct Plant Biol 41:1168–1177

    Article  CAS  PubMed  Google Scholar 

  • Hoang TML, Moghaddam L, Williams B, Khanna H, Dale J, Mundree SG (2015) Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. Front Plant Sci 6:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogg B, Kacprzyk J, Molony EM, O’Reilly C, Gallagher TF, Gallois P (2011) An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants. Plant Methods 7:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huett A, Goel G, Xavier RJ (2010) A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol 26:302–309

    Article  PubMed  Google Scholar 

  • Huh G, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649–659

    Article  PubMed  CAS  Google Scholar 

  • Huysmans M, Lema AS, Coll NS, Nowack MK (2017) Dying two deaths—programmed cell death regulation in development and disease. Curr Opin Plant Biol 35:37–44

    Article  PubMed  CAS  Google Scholar 

  • Joly A, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2:238–247

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Jini D (2010) Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. J Plant Sci 5:376–390

    Article  CAS  Google Scholar 

  • Kabbage M, Kessens R, Bartholomay LC, Williams B (2017) The life and death of a plant cell. Annu Rev Plant Biol 68:1–7. https://doi.org/10.1146/annurev-arplant-043015-111655

    Article  CAS  Google Scholar 

  • Kerr JFR, Wylie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khavari-Nejad RA, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151–154

    Article  CAS  Google Scholar 

  • Kim C, Meskauskiene R, Zhang S, Lee K, Ashok M, Blajecka K, Herrfurth C, Feussner I, Apela K (2012) Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 24:3026–3039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim Y, Wang M, Bai Y, Zeng Z, Guo F, Han N, Bian H, Wang J, Pan J, Zhu M (2014) Bcl-2 suppresses activation of VPEs by inhibiting cytosolic Ca2+ level with elevated K+ efflux in NaCl-induced PCD in rice. Plant Physiol Biochem 80:168–175

    Article  PubMed  CAS  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–325

    Article  PubMed  CAS  Google Scholar 

  • Koukalova B, Kovarik A, Fajkus J, Siroky J (1997) Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett 414:289–292

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  CAS  Google Scholar 

  • Kumar SR, Mohanapriya G, Sathishkumar R (2016) Abiotic stress-induced redox changes and programmed cell death in plants—a path to survival or death? In: Gupta DK, Palma JM, Corpas FJ (eds) Redox state as a central regulator of plant-cell stress responses. Springer, Germany, pp 233–252

    Chapter  Google Scholar 

  • Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914–32920

    Article  PubMed  CAS  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Pontier D, del Pozo O (1999) Die and let live: programmed cell death in plants. Curr Opin Plant Biol 2:502–507

    Article  PubMed  CAS  Google Scholar 

  • Le Pen J, Laurent M, Sarosiek K, Vuillier C, Gautier F, Montessuit S, Martinou JC, Letaï A, Braun F, Juin PP (2016) Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis 7:e2083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Jiang A, Chen H, Wang Y, Zhang WPB (2007a) Lanthanum prevents salt stress-induced programmed cell death in rice root tip cells by controlling early induction events. J Integr Biol 49:1024–1031

    Article  CAS  Google Scholar 

  • Li J, Jiang A, Zhang W (2007b) Salt stress-induced programmed cell death in rice root tip cells. J Integr Plant Biol 49:481–486

    Article  CAS  Google Scholar 

  • Li W, Kabbage M, Dickman MB (2010) Transgenic expression of an insect inhibitor of apoptosis gene, SfIAP, confers abiotic and biotic stress tolerance and delays tomato fruit ripening. Physiol Mol Plant Pathol 74:363–375

    Article  CAS  Google Scholar 

  • Lin J, Wang Y, Wang G (2005) Salt stress-induced programmed cell death via Ca2+-mediated mitochondrial permeability transition in tobacco protoplasts. Plant Growth Regul 45:243–250

    Article  CAS  Google Scholar 

  • Lin J, Wang Y, Wang G (2006) Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. J Plant Physiol 163:731–739

    Article  PubMed  CAS  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5:954–963

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Cheng Y, Liu Q, Bao JK, Yang JM (2010) Autophagic pathways as new targets for cancer drug development. Acta Pharmacol Sin 31:1154–1164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu W, Deng M, Fu G, Wang M, Zeng Z, Han N, Yang Y, Zhu M, Bian H (2016) Suppression of OsVPE3 enhances salt tolerance by attenuating vacuole rupture during programmed cell death and affects stomata development in rice. Rice 9:65. https://doi.org/10.1186/s12284-016-0138-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansour MMF (2014) Plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171:1787–1800

    Article  PubMed  CAS  Google Scholar 

  • Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Article  CAS  Google Scholar 

  • Mansour MMF, Salama KHA, Allam HYH (2015) Role of the plasma membrane in saline conditions: lipids and proteins. Bot Rev 81:416–451

    Article  Google Scholar 

  • Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T (2016) Autophagy in plants—what’s new on the menu? Trends Plant Sci 21:134–144

    Article  PubMed  CAS  Google Scholar 

  • Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani-Nemoto S (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216:397–402

    PubMed  CAS  Google Scholar 

  • Minina EA et al (2014) Autophagy as initiator or executioner of cell death. Trends Plant Sci 19:692–697

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, Takeoka Y, Miyake H (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol 157:661–667

    Article  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annl Rev Plant Biol 61:443–462

    Article  CAS  Google Scholar 

  • Monetti E, Kadono T, Tran D, Azzarello E, Arbelet-Bonnin D, Biligui B, Briand J, Kawano T, Mancuso S, Bouteau F (2014) Deciphering in early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells. J Exp Bot 65:1361–1375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nam JW, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, Yildirim MA, Rodriguez A, Bartel DP (2014) Global analyses of the effect of different cellular contexts on micro RNA targeting. Mol Cell 53:1031–1043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266

    Article  PubMed  CAS  Google Scholar 

  • Pan YJ, Liu L, Lin YC, Zu YG, Li LP, Tang ZH (2016) Ethylene antagonizes salt-induced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG-and senescence-associated genes in Arabidopsis. Front Plant Sci 7:696. https://doi.org/10.3389/fpls.2016.00696

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    Article  PubMed  CAS  Google Scholar 

  • Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress are described for two barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differed in salinity tolerance. J Exp Bot 60:4089–4103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Prat E, Narashimhan ML, Binzel ML, Botella MA, Chen Z, Valpuesta V, Bressan RA, Hasegawa PM (1992) Induction of a putative Ca2+-ATPase mRNA in NaCl adapted cells. Plant Physiol 100:1471–1478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieuchot L, Lai J, Loh RA, Leong FY, Chiam K, Stajich J, Jedd G (2015) Cellular subcompartments through cytoplasmic streaming. Dev Cell 34:410–420

    Article  PubMed  CAS  Google Scholar 

  • Poor P, Kovacs J, Szopko D, Tari I (2013) Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250:273–284

    Article  PubMed  CAS  Google Scholar 

  • Qudeimat E, Faltusz AM, Wheeler G, Lang D, Holtorf H, Brownlee C, Reski R, Frank W (2008) A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc Nat Acad Sci USA 105:19555–19560

    Article  PubMed  PubMed Central  Google Scholar 

  • Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  PubMed  CAS  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  PubMed  CAS  Google Scholar 

  • Reape TJ, McCabe PF (2013) Commentary: the cellular condensation of dying plant cells: programmed retraction or necrotic collapse? Plant Sci 207:135–139

    Article  PubMed  CAS  Google Scholar 

  • Reape T, Brogan N, McCabe P (2015) Mitochondrion and chloroplast regulation of plant programmed cell death. In: Gunawardena A, McCabe P (eds) Plant programmed cell death. Springer, New York, pp 33–53

    Chapter  Google Scholar 

  • Rezaei A, Amirjani M, Mahdiyeh M (2013) Programmed cell death induced by salt stress in wheat cell suspension. Int J Forest Soil Eros 3:35–39

    Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222

    Article  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha P, Sade N, Arzani A, Wilhelmi MMR, Coe KM, Li B, Blumwald E (2016) Effects of abiotic stress on physiological plasticity and water use of Setaria viridis (L.). Plant Sci 251:128–138

    Article  PubMed  CAS  Google Scholar 

  • Sevier C, Kaiser C (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556

    Article  PubMed  CAS  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signaling. J Exp Bot 60:709–712

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72

    Article  PubMed  CAS  Google Scholar 

  • Sirisha VL, Sinha M, D’Souza JS (2014) Menadione-induced caspase-dependent programmed cell death in the green chlorophyte Chlamydomonas reinhardtii. J Phycol 50:587–601

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Wu H, Pavlosky A, Zou LL, Deng X, Zhang ZX, Jevnikar AM (2016) Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death Dis 7:e2333. https://doi.org/10.1038/cddis.2016.210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subbarao GV, Johansen C (1994) Strategies and scope for improving salinity tolerance in crop plants. In: Pessarakli M (ed) Handbook of plant crop stress. Marcel Dekker, New York, pp 559–579

    Google Scholar 

  • Sullivan A, Lu X (2007) ASPP: a new family of oncogenes and tumour suppressor genes. Br J Cancer 96:196–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Samzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  • Swidzinski JA, Sweetlove LJ, Leaver CJ (2002) A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. Plant J 30:431–446

    Article  PubMed  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281

    Article  CAS  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turan S, Tripathy BC (2015) Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol Plant 153:477–491

    Article  PubMed  CAS  Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Garra L (2004) Production of reactive oxygen species, alteration of cytoplasmic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat-shock induced cell death in tobacco bright yellow 2 cells. Plant Physiol 134:1100–1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761

    Article  PubMed  CAS  Google Scholar 

  • Vavilala SL, Gawde KK, Sinha M, D’Souza S (2015) Programmed cell death is induced by hydrogen peroxide but not by excessive ionic stress of sodium chloride in the unicellular green alga Chlamydomonas reinhardtii. Eur J Phycol 50:422–438

    Article  CAS  Google Scholar 

  • Vavilala SL, Sinha M, Gawde KK, Hirolikar SM, D’Souza S (2016) KCl induces a caspase-independent programmed cell death in the unicellular green chlorophyte Chlamydomonas reinhardtii (Chlorophyceae). Phycologia 55:378–392

    Article  CAS  Google Scholar 

  • Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu JK (2007) Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol Cell Biol 27:7771–7780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Song J, Zhang Y, Yang B, Chen S (2009) Expression of baculovirus anti-apoptotic p35 gene in tobacco enhances tolerance to abiotic stress. Biotechnol Lett 31:585–589

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Li X, Liu Y, Zhao X (2010) Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. J Plant Physiol 167:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Itaya A, Zhong X, Wu Y, Zhang J, Knaap EV, Olmstead R, Qi Y, Ding B (2011) Function and evolution of a microRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. Plant Cell 23:3185–3203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Zhao L, Hou H, Zhang H, Huang Y, Wang Y, Li H, Gao F, Yan S, Li L (2015) Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays. Plant Cell Physiol 56:965–976

    Article  PubMed  CAS  Google Scholar 

  • Wimmers LE, Ewing NN, Bennett AB (1992) Higher plant Ca2C-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Nat Acad Sci USA 89:9205–9209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Nat Acad Sci USA 103:4034–4039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82:249–258

    Article  PubMed  Google Scholar 

  • Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu P, Rogers SJ, Roossinck MJ (2004) Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. Proc Nat Acad Sci USA 101:15805–15810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamane K, Mitsuya S, Taniguchi W, Miyake H (2012) Salt-induced chloroplast protrusion is the process of exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts into cytoplasm in leaves of rice. Plant Cell Environ 35:1663–1671

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Zhang L, Hao H, Zhang P, Zhu H, Cheng W, Wang Y, Wang X, Wang C (2015) Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis. Plant J 84:1274–1294

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Bartholomew JE, James M, Greenberg JT (2004) The mitochondrion: an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

  • Zahra J, Nazim H, Cai S, Han Y, Wu D, Zhang B, Haider SI, Zhang G (2014) The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance. Acta Physiol Plant 36:1261–1269

    Article  CAS  Google Scholar 

  • Zanna C, Ghelli A, Porcelli AM, Martinuzzi A, Carelli V, Rugolo M (2005) Caspase-independent death of Leber’s hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and Endonuclease G. Apoptosis 10:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Dong S, Wang M, Wang W, Song W, Dou X, Zheng X, Zhang Z (2010) The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure. J Exp Bot 61:3799–3812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Li Y, Lu W, Meng F, Wu C, Guo X (2012) Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot 63:3935–3951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Fan X, Wang B, Song L (2016) Calcium ion on membrane fouling reduction and bioflocculation promotion in membrane bioreactor at high salt shock. Bioresour Technol 200:535–540

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Caplan J, Mamillapalli P, Czymmek K, Dinesh-Kuma SP (2010) Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO J 29:1007–1018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmermann D, Gomez-Barrera JA, Pasule C, Brack-Frick UB, Sieferer E, Nicholson TM, Pfannstiel J, Stintzi A, Schaller A (2016) Cell death control by matrix metalloproteinases. Plant Physiol 171:1456–1469

    PubMed  PubMed Central  Google Scholar 

  • Zuppini A, Bugno V, Baldan B (2006) Monitoring programmed cell death triggered by mild heat shock in soybean-cultured cells. Funct Plant Biol 33:617–627

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Arzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arzani, A. (2018). Manipulating Programmed Cell Death Pathways for Enhancing Salinity Tolerance in Crops. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90318-7_5

Download citation

Publish with us

Policies and ethics