Advertisement

Manipulating Programmed Cell Death Pathways for Enhancing Salinity Tolerance in Crops

  • Ahmad Arzani
Chapter

Abstract

One of the key challenges for researchers is to obtain a deeper understanding of the strategies and mechanisms of plant adaptation to environmental stress that help overcome the limitations associated with climate change and loss of biodiversity. In this context, tolerance to salinity stress is one of the main abiotic factors constraining the plant growth, and production is of special importance. Programmed cell death (PCD) plays a protective role against biotic and abiotic stresses. PCD might play an important role in the maintenance of normal tissue homeostasis, regulation of cell metabolism, and remodeling of tissues after injury and infection as well as the elimination of damaged cells. Salinity stress induces an alteration in chloroplasts, mitochondria, cytoplasm, plasma membrane (PM), endoplasmic reticulum (ER), Golgi apparatus, vesicle formation and trafficking, and vacuoles formation which may result in PCD in plants. The overexpression of pro-survival genes including anti-apoptotic genes and those involved in suppression of apoptosis genes in the transgenic plants to enhance abiotic stress tolerance has been the subject of a number of investigations, particularly in the context of salinity tolerance. Therefore, the development of transformed plants for resistance to apoptosis could be an effective approach to improving salinity tolerance, while the use of complementary techniques like RNA-interfering (RNAi)-mediated gene knockdowns has been shown to be an interesting and appealing alternative. The objective of this review is to summarize the current state of knowledge on improving salinity tolerance in crop plants through manipulation of PCD pathways.

Keywords

Abiotic stress Molecular networks Salt Transformation Vacuolar processing enzyme 

Abbreviations

AIF

Apoptosis-inducing factor

AL-PCD

Apoptotic-like PCD

ASPP

Apoptosis-stimulating proteins of p53

ACD

Autophagic cell death

BAG

Bcl-2-associated athanogene

Bak

BCL-2 antagonist/killer-1

Bax

Bcl-2-associated X protein

Bcl-2

B-cell lymphoma2

Bcl-xl

BCL-2-like 1

Ca2+

Calcium ion

ER

Endoplasmic reticulum

FB1

Fumonisin B1

GORK

Guard cell outward-rectifying K+ channel

H2O2

Hydrogen peroxide

HR

Hypersensitivity

IAP

Inhibitor of apoptosis

K+

Potassium ion

MAPK

Mitogen-activated protein kinase

Mcl-1

Myeloid cell leukemia-1

Na+

Sodium ion

NADPH

Nicotinamide adenine dinucleotide phosphate hydrogen

PM

Plasma membrane

RNAi

RNA interfering

ROS

Reactive oxygen species

PCD

Programmed cell death

PLC

Phospholipase C

SKOR

Outward-rectifying K+ channel

VPE

Vacuolar processing enzyme

References

  1. Affenzeller MJ, Darehshouri A, Andosch A, Lu C, Lütz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60:939–954PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aken O, Breusegem F (2015) Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci 20:754–766PubMedCrossRefGoogle Scholar
  3. Ambastha V, Sopory SK, Tiwari BS, Tripathy BC (2017) Photo-modulation of programmed cell death in rice leaves triggered by salinity. Apoptosis 22:41–56PubMedCrossRefGoogle Scholar
  4. Anderson MA, Deng J, Seymour JF, Tam C, Kim SY, Fein J, Yu L, Brown JR, Westerman D, Si EG, Majewski IJ, Segal D, Enschede SLH, Huang DCS, Davids MS, Letai A, Roberts AW (2016) The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood 127:3215–3224PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ariño-Estrada G, Mitchell GS, Saha P, Arzani A, Cherry SR, Blumwald E, Kyme AZ (2017) Imaging salt transport in plants using PET: a feasibility study. IEEE nuclear science symposium and medical imaging conference 2017 (IEEE NSS/MIC 2017)Google Scholar
  6. Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44:373–383CrossRefGoogle Scholar
  7. Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189CrossRefGoogle Scholar
  8. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563PubMedCrossRefGoogle Scholar
  9. Bagniewska-Zadworna A, Arasimowicz-Jelonek M (2016) The mystery of underground death: cell death in roots during ontogeny and in response to environmental factors. Plant Biol 18:171–184PubMedCrossRefGoogle Scholar
  10. Bahieldin A, Atef A, Edris S, Gadalla NO, Ali HM, Hassan SM, Al-Kordy MA, Ramadan AM, Makki RM, Al-Hajar ASM, El-Domyati FM (2016) Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant. BMC Plant Biol 16:216. https://doi.org/10.1186/s12870-016-0908-z CrossRefPubMedPubMedCentralGoogle Scholar
  11. Balk J, Leaver CJ, McCabe P (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463:151–154PubMedCrossRefGoogle Scholar
  12. Bhattacharjee L, Singh PK, Singh S, Nandi AK (2015) Down-regulation of rice serpin gene OsSRP-LRS exaggerates stress-induced cell death. J Plant Biol 58:327–332CrossRefGoogle Scholar
  13. Bialik S, Zalckvar E, Ber Y, Rubinstein AD, Kimchi A (2010) Systems biology analysis of programmed cell death. Trends Biochem Sci 35:556–564PubMedCrossRefGoogle Scholar
  14. Biswas MS, Mano J (2015) Lipid peroxide-derived short-chain carbonyls mediate hydrogen peroxide-induced and salt-induced programmed cell death in plants. Plant Physiol 168:885–898PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499PubMedCrossRefGoogle Scholar
  16. Boursiac Y, Lee SN, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF (2010) Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death. Plant Physiol 154:1158–1171PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cande C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734PubMedCrossRefGoogle Scholar
  18. Chen R, Sun S, Wang C, Li Y, Liang Y, An F, Li C, Dong H, Yang X, Zhang J, Zuo J (2009a) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19:1377–1387PubMedCrossRefGoogle Scholar
  19. Chen X, Wang Y, Li J, Jiang A, Cheng Y, Zhang W (2009b) Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol Biochem 47:407–415PubMedCrossRefGoogle Scholar
  20. Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602PubMedCrossRefGoogle Scholar
  21. Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706PubMedPubMedCentralCrossRefGoogle Scholar
  22. D’Autreaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824PubMedCrossRefGoogle Scholar
  23. Dauphinee AN, Warner S, Gunawardena AH (2014) A comparison of induced and developmental cell death morphologies in lace plant (Aponogeton madagascariensis ) leaves. BMC Plant Biol 14:389PubMedPubMedCentralCrossRefGoogle Scholar
  24. De Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant Cell Environ 35:234–244PubMedCrossRefGoogle Scholar
  25. Demidchik V (2014) Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol 171:696–707PubMedCrossRefGoogle Scholar
  26. Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479PubMedPubMedCentralCrossRefGoogle Scholar
  27. Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270PubMedCrossRefGoogle Scholar
  28. Deng M, Bian H, Xie Y, Kim Y, Wang W, Lin E, Zeng Z, Guo F, Pan J, Han N, Wang J, Qian Q, Zhu M (2011) Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and OsVPE3, but not via OsVPE1 and OsVPE4, in rice. FEBS J 278:4797–4810PubMedCrossRefGoogle Scholar
  29. Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc Natl Acad Sci U S A 98:6957–6962PubMedPubMedCentralCrossRefGoogle Scholar
  30. Doyle SM, Diamond M, McCabe PF (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482PubMedCrossRefGoogle Scholar
  31. Fidalgo F, Santos A, Santos I, Salema R (2004) Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants. Ann Appl Biol 145:185–192CrossRefGoogle Scholar
  32. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  33. Foyer CH, Noctor G (2016) Stress-triggered redox signaling: what’s in pROSpect? Plant Cell Environ 39:951–964PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101PubMedCrossRefGoogle Scholar
  35. Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy A, Karpinski S, Mittler R (2016) ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615PubMedPubMedCentralCrossRefGoogle Scholar
  36. Green DR (2011) Means to an end. Apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  37. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  38. Hamed-laouti IB, Arbelet-bonnin D, De Bont L, Biligui B, Gakière B, Abdelly C, Ben Hamed K (2016) Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidopsis thaliana. Plant Sci 247:49–59PubMedCrossRefGoogle Scholar
  39. Hatsugai N, Yamada K, Goto-Yamada S, Hara-Nishimura I (2015) Vacuolar processing enzyme in plant programmed cell death. Front Plant Sci 6:234PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167CrossRefGoogle Scholar
  41. Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Nat Acad Sci USA 92:3903–3907PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hoang TML, Williams B, Khanna H, Dale J, Mundree SG (2014) Physiological basis of salt stress tolerance in rice expressing the anti-apoptotic gene SfIAP. Funct Plant Biol 41:1168–1177CrossRefGoogle Scholar
  43. Hoang TML, Moghaddam L, Williams B, Khanna H, Dale J, Mundree SG (2015) Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. Front Plant Sci 6:175PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hogg B, Kacprzyk J, Molony EM, O’Reilly C, Gallagher TF, Gallois P (2011) An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants. Plant Methods 7:45PubMedPubMedCentralCrossRefGoogle Scholar
  45. Huett A, Goel G, Xavier RJ (2010) A systems biology viewpoint on autophagy in health and disease. Curr Opin Gastroenterol 26:302–309PubMedCrossRefPubMedCentralGoogle Scholar
  46. Huh G, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649–659PubMedCrossRefPubMedCentralGoogle Scholar
  47. Huysmans M, Lema AS, Coll NS, Nowack MK (2017) Dying two deaths—programmed cell death regulation in development and disease. Curr Opin Plant Biol 35:37–44PubMedCrossRefPubMedCentralGoogle Scholar
  48. Joly A, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2:238–247PubMedCrossRefPubMedCentralGoogle Scholar
  49. Joseph B, Jini D (2010) Salinity induced programmed cell death in plants: challenges and opportunities for salt-tolerant plants. J Plant Sci 5:376–390CrossRefGoogle Scholar
  50. Kabbage M, Kessens R, Bartholomay LC, Williams B (2017) The life and death of a plant cell. Annu Rev Plant Biol 68:1–7. https://doi.org/10.1146/annurev-arplant-043015-111655 CrossRefGoogle Scholar
  51. Kerr JFR, Wylie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J Cancer 26:239–257PubMedPubMedCentralCrossRefGoogle Scholar
  52. Khavari-Nejad RA, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151–154CrossRefGoogle Scholar
  53. Kim C, Meskauskiene R, Zhang S, Lee K, Ashok M, Blajecka K, Herrfurth C, Feussner I, Apela K (2012) Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 24:3026–3039PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kim Y, Wang M, Bai Y, Zeng Z, Guo F, Han N, Bian H, Wang J, Pan J, Zhu M (2014) Bcl-2 suppresses activation of VPEs by inhibiting cytosolic Ca2+ level with elevated K+ efflux in NaCl-induced PCD in rice. Plant Physiol Biochem 80:168–175PubMedCrossRefGoogle Scholar
  55. Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–325PubMedCrossRefGoogle Scholar
  56. Koukalova B, Kovarik A, Fajkus J, Siroky J (1997) Chromatin fragmentation associated with apoptotic changes in tobacco cells exposed to cold stress. FEBS Lett 414:289–292PubMedCrossRefGoogle Scholar
  57. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730PubMedCrossRefGoogle Scholar
  58. Kumar SR, Mohanapriya G, Sathishkumar R (2016) Abiotic stress-induced redox changes and programmed cell death in plants—a path to survival or death? In: Gupta DK, Palma JM, Corpas FJ (eds) Redox state as a central regulator of plant-cell stress responses. Springer, Germany, pp 233–252CrossRefGoogle Scholar
  59. Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280:32914–32920PubMedCrossRefGoogle Scholar
  60. Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315PubMedCrossRefGoogle Scholar
  61. Lam E, Pontier D, del Pozo O (1999) Die and let live: programmed cell death in plants. Curr Opin Plant Biol 2:502–507PubMedCrossRefGoogle Scholar
  62. Le Pen J, Laurent M, Sarosiek K, Vuillier C, Gautier F, Montessuit S, Martinou JC, Letaï A, Braun F, Juin PP (2016) Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis 7:e2083PubMedPubMedCentralCrossRefGoogle Scholar
  63. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li J, Jiang A, Chen H, Wang Y, Zhang WPB (2007a) Lanthanum prevents salt stress-induced programmed cell death in rice root tip cells by controlling early induction events. J Integr Biol 49:1024–1031CrossRefGoogle Scholar
  65. Li J, Jiang A, Zhang W (2007b) Salt stress-induced programmed cell death in rice root tip cells. J Integr Plant Biol 49:481–486CrossRefGoogle Scholar
  66. Li W, Kabbage M, Dickman MB (2010) Transgenic expression of an insect inhibitor of apoptosis gene, SfIAP, confers abiotic and biotic stress tolerance and delays tomato fruit ripening. Physiol Mol Plant Pathol 74:363–375CrossRefGoogle Scholar
  67. Lin J, Wang Y, Wang G (2005) Salt stress-induced programmed cell death via Ca2+-mediated mitochondrial permeability transition in tobacco protoplasts. Plant Growth Regul 45:243–250CrossRefGoogle Scholar
  68. Lin J, Wang Y, Wang G (2006) Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. J Plant Physiol 163:731–739PubMedCrossRefGoogle Scholar
  69. Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914PubMedCrossRefGoogle Scholar
  70. Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5:954–963PubMedCrossRefGoogle Scholar
  71. Liu B, Cheng Y, Liu Q, Bao JK, Yang JM (2010) Autophagic pathways as new targets for cancer drug development. Acta Pharmacol Sin 31:1154–1164PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lu W, Deng M, Fu G, Wang M, Zeng Z, Han N, Yang Y, Zhu M, Bian H (2016) Suppression of OsVPE3 enhances salt tolerance by attenuating vacuole rupture during programmed cell death and affects stomata development in rice. Rice 9:65. https://doi.org/10.1186/s12284-016-0138-x CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mansour MMF (2014) Plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171:1787–1800PubMedCrossRefGoogle Scholar
  74. Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122CrossRefGoogle Scholar
  75. Mansour MMF, Salama KHA, Allam HYH (2015) Role of the plasma membrane in saline conditions: lipids and proteins. Bot Rev 81:416–451CrossRefGoogle Scholar
  76. Michaeli S, Galili G, Genschik P, Fernie AR, Avin-Wittenberg T (2016) Autophagy in plants—what’s new on the menu? Trends Plant Sci 21:134–144PubMedCrossRefGoogle Scholar
  77. Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani-Nemoto S (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216:397–402PubMedGoogle Scholar
  78. Minina EA et al (2014) Autophagy as initiator or executioner of cell death. Trends Plant Sci 19:692–697PubMedCrossRefGoogle Scholar
  79. Mitsuya S, Takeoka Y, Miyake H (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol 157:661–667CrossRefGoogle Scholar
  80. Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19PubMedCrossRefGoogle Scholar
  81. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annl Rev Plant Biol 61:443–462CrossRefGoogle Scholar
  82. Monetti E, Kadono T, Tran D, Azzarello E, Arbelet-Bonnin D, Biligui B, Briand J, Kawano T, Mancuso S, Bouteau F (2014) Deciphering in early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells. J Exp Bot 65:1361–1375PubMedPubMedCentralCrossRefGoogle Scholar
  83. Nam JW, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, Yildirim MA, Rodriguez A, Bartel DP (2014) Global analyses of the effect of different cellular contexts on micro RNA targeting. Mol Cell 53:1031–1043PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498PubMedCrossRefGoogle Scholar
  85. Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266PubMedCrossRefGoogle Scholar
  86. Pan YJ, Liu L, Lin YC, Zu YG, Li LP, Tang ZH (2016) Ethylene antagonizes salt-induced growth retardation and cell death process via transcriptional controlling of ethylene-, BAG-and senescence-associated genes in Arabidopsis. Front Plant Sci 7:696. https://doi.org/10.3389/fpls.2016.00696 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282PubMedCrossRefGoogle Scholar
  88. Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress are described for two barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differed in salinity tolerance. J Exp Bot 60:4089–4103PubMedPubMedCentralCrossRefGoogle Scholar
  89. Perez-Prat E, Narashimhan ML, Binzel ML, Botella MA, Chen Z, Valpuesta V, Bressan RA, Hasegawa PM (1992) Induction of a putative Ca2+-ATPase mRNA in NaCl adapted cells. Plant Physiol 100:1471–1478PubMedPubMedCentralCrossRefGoogle Scholar
  90. Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pieuchot L, Lai J, Loh RA, Leong FY, Chiam K, Stajich J, Jedd G (2015) Cellular subcompartments through cytoplasmic streaming. Dev Cell 34:410–420PubMedCrossRefGoogle Scholar
  92. Poor P, Kovacs J, Szopko D, Tari I (2013) Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250:273–284PubMedCrossRefGoogle Scholar
  93. Qudeimat E, Faltusz AM, Wheeler G, Lang D, Holtorf H, Brownlee C, Reski R, Frank W (2008) A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc Nat Acad Sci USA 105:19555–19560PubMedPubMedCentralCrossRefGoogle Scholar
  94. Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26PubMedCrossRefGoogle Scholar
  95. Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256PubMedCrossRefGoogle Scholar
  96. Reape TJ, McCabe PF (2013) Commentary: the cellular condensation of dying plant cells: programmed retraction or necrotic collapse? Plant Sci 207:135–139PubMedCrossRefGoogle Scholar
  97. Reape T, Brogan N, McCabe P (2015) Mitochondrion and chloroplast regulation of plant programmed cell death. In: Gunawardena A, McCabe P (eds) Plant programmed cell death. Springer, New York, pp 33–53CrossRefGoogle Scholar
  98. Rezaei A, Amirjani M, Mahdiyeh M (2013) Programmed cell death induced by salt stress in wheat cell suspension. Int J Forest Soil Eros 3:35–39Google Scholar
  99. Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222CrossRefGoogle Scholar
  100. Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370CrossRefGoogle Scholar
  101. Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340PubMedPubMedCentralCrossRefGoogle Scholar
  102. Saha P, Sade N, Arzani A, Wilhelmi MMR, Coe KM, Li B, Blumwald E (2016) Effects of abiotic stress on physiological plasticity and water use of Setaria viridis (L.). Plant Sci 251:128–138PubMedCrossRefGoogle Scholar
  103. Sevier C, Kaiser C (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556PubMedCrossRefGoogle Scholar
  104. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signaling. J Exp Bot 60:709–712PubMedCrossRefGoogle Scholar
  106. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197PubMedCrossRefGoogle Scholar
  108. Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72PubMedCrossRefGoogle Scholar
  109. Sirisha VL, Sinha M, D’Souza JS (2014) Menadione-induced caspase-dependent programmed cell death in the green chlorophyte Chlamydomonas reinhardtii. J Phycol 50:587–601PubMedCrossRefGoogle Scholar
  110. Su Y, Wu H, Pavlosky A, Zou LL, Deng X, Zhang ZX, Jevnikar AM (2016) Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death Dis 7:e2333. https://doi.org/10.1038/cddis.2016.210 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Subbarao GV, Johansen C (1994) Strategies and scope for improving salinity tolerance in crop plants. In: Pessarakli M (ed) Handbook of plant crop stress. Marcel Dekker, New York, pp 559–579Google Scholar
  112. Sullivan A, Lu X (2007) ASPP: a new family of oncogenes and tumour suppressor genes. Br J Cancer 96:196–200PubMedPubMedCentralCrossRefGoogle Scholar
  113. Susin SA, Lorenzo HK, Samzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446PubMedCrossRefGoogle Scholar
  114. Swidzinski JA, Sweetlove LJ, Leaver CJ (2002) A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana. Plant J 30:431–446PubMedCrossRefGoogle Scholar
  115. Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ Exp Bot 65:270–281CrossRefGoogle Scholar
  116. Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281PubMedPubMedCentralCrossRefGoogle Scholar
  117. Turan S, Tripathy BC (2015) Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol Plant 153:477–491PubMedCrossRefGoogle Scholar
  118. Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Garra L (2004) Production of reactive oxygen species, alteration of cytoplasmic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat-shock induced cell death in tobacco bright yellow 2 cells. Plant Physiol 134:1100–1112PubMedPubMedCentralCrossRefGoogle Scholar
  119. Van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761PubMedCrossRefGoogle Scholar
  120. Vavilala SL, Gawde KK, Sinha M, D’Souza S (2015) Programmed cell death is induced by hydrogen peroxide but not by excessive ionic stress of sodium chloride in the unicellular green alga Chlamydomonas reinhardtii. Eur J Phycol 50:422–438CrossRefGoogle Scholar
  121. Vavilala SL, Sinha M, Gawde KK, Hirolikar SM, D’Souza S (2016) KCl induces a caspase-independent programmed cell death in the unicellular green chlorophyte Chlamydomonas reinhardtii (Chlorophyceae). Phycologia 55:378–392CrossRefGoogle Scholar
  122. Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu JK (2007) Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol Cell Biol 27:7771–7780PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wang Z, Song J, Zhang Y, Yang B, Chen S (2009) Expression of baculovirus anti-apoptotic p35 gene in tobacco enhances tolerance to abiotic stress. Biotechnol Lett 31:585–589PubMedCrossRefGoogle Scholar
  124. Wang J, Li X, Liu Y, Zhao X (2010) Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells. J Plant Physiol 167:1145–1151PubMedCrossRefGoogle Scholar
  125. Wang Y, Itaya A, Zhong X, Wu Y, Zhang J, Knaap EV, Olmstead R, Qi Y, Ding B (2011) Function and evolution of a microRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. Plant Cell 23:3185–3203PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wang P, Zhao L, Hou H, Zhang H, Huang Y, Wang Y, Li H, Gao F, Yan S, Li L (2015) Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays. Plant Cell Physiol 56:965–976PubMedCrossRefGoogle Scholar
  127. Wimmers LE, Ewing NN, Bennett AB (1992) Higher plant Ca2C-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Nat Acad Sci USA 89:9205–9209PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Nat Acad Sci USA 103:4034–4039PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82:249–258PubMedCrossRefGoogle Scholar
  130. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455PubMedPubMedCentralCrossRefGoogle Scholar
  131. Xu P, Rogers SJ, Roossinck MJ (2004) Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. Proc Nat Acad Sci USA 101:15805–15810PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yamane K, Mitsuya S, Taniguchi W, Miyake H (2012) Salt-induced chloroplast protrusion is the process of exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts into cytoplasm in leaves of rice. Plant Cell Environ 35:1663–1671PubMedCrossRefGoogle Scholar
  133. Yang T, Zhang L, Hao H, Zhang P, Zhu H, Cheng W, Wang Y, Wang X, Wang C (2015) Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis. Plant J 84:1274–1294PubMedCrossRefGoogle Scholar
  134. Yao N, Bartholomew JE, James M, Greenberg JT (2004) The mitochondrion: an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610PubMedCrossRefGoogle Scholar
  135. Zahra J, Nazim H, Cai S, Han Y, Wu D, Zhang B, Haider SI, Zhang G (2014) The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance. Acta Physiol Plant 36:1261–1269CrossRefGoogle Scholar
  136. Zanna C, Ghelli A, Porcelli AM, Martinuzzi A, Carelli V, Rugolo M (2005) Caspase-independent death of Leber’s hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and Endonuclease G. Apoptosis 10:997–1007PubMedCrossRefGoogle Scholar
  137. Zhang H, Dong S, Wang M, Wang W, Song W, Dou X, Zheng X, Zhang Z (2010) The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure. J Exp Bot 61:3799–3812PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhang L, Li Y, Lu W, Meng F, Wu C, Guo X (2012) Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana. J Exp Bot 63:3935–3951PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zhang H, Fan X, Wang B, Song L (2016) Calcium ion on membrane fouling reduction and bioflocculation promotion in membrane bioreactor at high salt shock. Bioresour Technol 200:535–540PubMedCrossRefPubMedCentralGoogle Scholar
  141. Zhu X, Caplan J, Mamillapalli P, Czymmek K, Dinesh-Kuma SP (2010) Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO J 29:1007–1018PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zimmermann D, Gomez-Barrera JA, Pasule C, Brack-Frick UB, Sieferer E, Nicholson TM, Pfannstiel J, Stintzi A, Schaller A (2016) Cell death control by matrix metalloproteinases. Plant Physiol 171:1456–1469PubMedPubMedCentralGoogle Scholar
  143. Zuppini A, Bugno V, Baldan B (2006) Monitoring programmed cell death triggered by mild heat shock in soybean-cultured cells. Funct Plant Biol 33:617–627CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agronomy and Plant Breeding, College of AgricultureIsfahan University of TechnologyIsfahanIran

Personalised recommendations