Skip to main content

3D Printed Porous Bone Constructs

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

Bone supports and protects organs in the body. Bone has three dimensional (3D) structures, where the spongy and porous inner part is surrounded by an outer part of low porosity. Bone diseases and fractures affect a myriad of people and are serious health concerns in population where aging is coupled with increased obesity and poor physical activity. As a metabolically active tissue, bone self-heals, but its ability is limited by ages, diseases, pathological conditions, and cannot repair large defects, which lead to bone fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010;132(1):15–30.

    PubMed  CAS  Google Scholar 

  2. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1(4):245–60.

    Article  CAS  PubMed  Google Scholar 

  3. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518.

    Article  CAS  PubMed  Google Scholar 

  4. Giannitelli S, Accoto D, Trombetta M, Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014;10(2):580–94.

    Article  CAS  PubMed  Google Scholar 

  5. Hollister SJ, Bergman TL. Biomedical applications of integrated additive/subtractive manufacturing. Additive/Subtractive Manufacturing Research and Development in Europe, vol. 1001. 2004. p. 55.

    Google Scholar 

  6. Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications. Chem Soc Rev. 2016;45(10):2740–55.

    Article  CAS  PubMed  Google Scholar 

  7. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504.

    Article  CAS  Google Scholar 

  8. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27.

    Article  CAS  PubMed  Google Scholar 

  10. Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B. 2010;16(5):523–39.

    Article  CAS  Google Scholar 

  11. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res Part A. 2001;55(2):203–16.

    Article  CAS  Google Scholar 

  12. Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int. 2010;36(8):2431–9.

    Article  CAS  Google Scholar 

  13. Tan K, Chua C, Leong K, Cheah C, Cheang P, Bakar MA, Cha S. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials. 2003;24(18):3115–23.

    Article  CAS  PubMed  Google Scholar 

  14. Saijo H, Igawa K, Kanno Y, Mori Y, Kondo K, Shimizu K, Suzuki S, Chikazu D, Iino M, Anzai M. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs. 2009;12(3):200–5.

    Article  PubMed  Google Scholar 

  15. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Senatov F, Niaza K, Zadorozhnyy MY, Maksimkin A, Kaloshkin S, Estrin Y. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater. 2016;57:139–48.

    Article  CAS  PubMed  Google Scholar 

  17. Minas C, Carnelli D, Tervoort E, Studart AR. 3D printing of emulsions and foams into hierarchical porous ceramics. Adv Mater. 2016;28(45):9993–9.

    Article  CAS  PubMed  Google Scholar 

  18. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347–59.

    Article  CAS  PubMed  Google Scholar 

  19. Vallet-Regi M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32(1):1–31.

    Article  CAS  Google Scholar 

  20. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8(4):1401–21.

    Article  CAS  PubMed  Google Scholar 

  21. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res Part B. 2005;74(2):782–8.

    Article  CAS  Google Scholar 

  22. Warnke PH, Seitz H, Warnke F, Becker ST, Sivananthan S, Sherry E, Liu Q, Wiltfang J, Douglas T. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J Biomed Mater Res Part B. 2010;93(1):212–7.

    Google Scholar 

  23. Vail N, Swain L, Fox W, Aufdlemorte T, Lee G, Barlow J. Materials for biomedical applications. Mater Des. 1999;20(2):123–32.

    Article  CAS  Google Scholar 

  24. Lee G, Barlow J. In: Selective laser sintering of calcium phosphate powders. Proceedings of the solid freeform fabrication symposium, Austin, TX, 1994; pp. 191–7.

    Google Scholar 

  25. Lee G, Barlow J. In: Selective laser sintering of bioceramic materials for implants. Proceedings of the solid freeform fabrication symposium, Austin, TX, 1993; pp. 376–80.

    Google Scholar 

  26. Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30(12):2563–7.

    Article  CAS  Google Scholar 

  27. Schickle K, Zurlinden K, Bergmann C, Lindner M, Kirsten A, Laub M, Telle R, Jennissen H, Fischer H. Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2. J Mater Sci Mater Med. 2011;22(4):763–71.

    Article  CAS  PubMed  Google Scholar 

  28. Shao H, He Y, Fu J, He D, Yang X, Xie J, Yao C, Ye J, Xu S, Gou Z. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc. 2016;36(6):1495–503.

    Article  CAS  Google Scholar 

  29. Xie J, Shao H, He D, Yang X, Yao C, Ye J, He Y, Fu J, Gou Z. Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds. MRS Commun. 2015;5(4):631–9.

    Article  CAS  Google Scholar 

  30. Sun M, Liu A, Shao H, Yang X, Ma C, Yan S, Liu Y, He Y, Gou Z. Systematical evaluation of mechanically strong 3D printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects. Sci Rep. 2016;6:34029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taboas J, Maddox R, Krebsbach P, Hollister S. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24(1):181–94.

    Article  CAS  PubMed  Google Scholar 

  32. Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 2004;10(9–10):1376–85.

    Article  CAS  PubMed  Google Scholar 

  33. Fousová M, Kubásek J, Vojtěch D, Fojt J, Čapek J. 3D printed porous stainless steel for potential use in medicine, IOP Conference Series: Materials Science and Engineering. Bristol: IOP Publishing; 2017. p. 012025.

    Google Scholar 

  34. Lewallen EA, Jones DL, Dudakovic A, Thaler R, Paradise CR, Kremers HM, Abdel MP, Kakar S, Dietz AB, Cohen RC. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium. Gene. 2016;581(2):95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Peppo G, Palmquist A, Borchardt P, Lennerås M, Hyllner J, Snis A, Lausmaa J, Thomsen P, Karlsson C. Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors. Sci World J. 2012;2012:1.

    Article  CAS  Google Scholar 

  36. Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, Cohen RC, Westendorf JJ, Lewallen DG, Van Wijnen AJ. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B. 2014;21(2):218–30.

    Article  Google Scholar 

  37. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47(3):49–121.

    Article  CAS  Google Scholar 

  38. Elias C, Lima JH, Valiev R, Meyers M. Biomedical applications of titanium and its alloys. JOM. 2008;60(3):46–9.

    Article  CAS  Google Scholar 

  39. Chou D-T, Wells D, Hong D, Lee B, Kuhn H, Kumta PN. Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 2013;9(10):8593–603.

    Article  CAS  PubMed  Google Scholar 

  40. Hong D, Chou D-T, Velikokhatnyi OI, Roy A, Lee B, Swink I, Issaev I, Kuhn HA, Kumta PN. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-ca/mg alloys. Acta Biomater. 2016;45:375–86.

    Article  CAS  PubMed  Google Scholar 

  41. Rezwan K, Chen Q, Blaker J, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  PubMed  Google Scholar 

  42. Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A. 2006;78(2):306–15.

    Article  CAS  PubMed  Google Scholar 

  43. Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 2013;9(3):5521–30.

    Article  CAS  PubMed  Google Scholar 

  44. Serra T, Ortiz-Hernandez M, Engel E, Planell JA, Navarro M. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Mater Sci Eng C. 2014;38:55–62.

    Article  CAS  Google Scholar 

  45. Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.

    Article  CAS  Google Scholar 

  46. Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 2011;7(6):2644–50.

    Article  CAS  PubMed  Google Scholar 

  47. Yin H-M, Qian J, Zhang J, Lin Z-F, Li J-S, Xu J-Z, Li Z-M. Engineering porous poly (lactic acid) scaffolds with high mechanical performance via a solid state extrusion/porogen leaching approach. Polymers. 2016;8(6):213.

    Article  PubMed Central  Google Scholar 

  48. Cowan CM, Aghaloo T, Chou Y-F, Walder B, Zhang X, Soo C, Ting K, Wu B. MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng. 2007;13(3):501–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, W., Wei, Q., Xun, X., Su, M. (2018). 3D Printed Porous Bone Constructs. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_3

Download citation

Publish with us

Policies and ethics