Skip to main content

Advertisement

Log in

Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology

  • Original Article
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

Ideally, artificial bones should be dimensionally compatible with deformities, and be biodegradable and osteoconductive; however, there are no artificial bones developed to date that satisfy these requirements. We fabricated novel custom-made artificial bones from α-tricalcium phosphate powder using an inkjet printer and implanted them in ten patients with maxillofacial deformities. The artificial bones had dimensional compatibility in all the patients. The operation time was reduced due to minimal need for size adjustment and fixing manipulation. The postsurgical computed tomography analysis detected partial union between the artificial bones and host bone tissues. There were no serious adverse reactions. These findings provide support for further clinical studies of the inkjet-printed custom-made artificial bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herring SW, Ochareon P. Bone — special problems of the craniofacial region. Orthod Craniofac Res 2005;8:174–182

    Article  PubMed  CAS  Google Scholar 

  2. Tessier P, Kawamoto H, Matthews D, Posnick J, Raulo Y, Tulasne JF, Wolfe SA. Autogenous bone grafts and bone substitutes — tools and techniques: I. A 20 000-case experience in maxillofacial and craniofacial surgery. Plast Reconstr Surg 2005;116:6S–24S

    Article  PubMed  CAS  Google Scholar 

  3. Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 2005;16:981–989

    Article  PubMed  Google Scholar 

  4. Hallman M, Thor A. Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontol 2000 2008;47:172–192

    Article  Google Scholar 

  5. Fischer-Brandies E, Dielert E. Clinical use of tricalciumphosphate and hydroxyapatite in maxillofacial surgery. J Oral Implantol 1985;12:40–44

    PubMed  CAS  Google Scholar 

  6. Karashima S, Takeuchi A, Matsuya S, Udoh KI, Koyano K, Ishikawa K. Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam. J Biomed Mater Res A 2009;88:628–633

    PubMed  Google Scholar 

  7. Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 2004;22:643–652

    Article  PubMed  CAS  Google Scholar 

  8. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4:518–524

    Article  PubMed  CAS  Google Scholar 

  9. Jacobs PF, Reid DT. Rapid prototyping and manufacturing — fundamentals of stereolithography. 1st ed. Dearborn, MI: Society of Manufacturing Engineers; 1992

    Google Scholar 

  10. Ono I, Abe K, Shiotani S, Hirayama Y. Producing a full-scale model from computed tomographic data with the rapid prototyping technique using the binder jet method: a comparison with the laser lithography method using a dry skull. J Craniofac Surg 2000;11:527–537

    Article  PubMed  CAS  Google Scholar 

  11. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003;5:29–39

    PubMed  CAS  Google Scholar 

  12. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed 2002;41:3130–3146

    Article  CAS  Google Scholar 

  13. Igawa K, Mochizuki M, Sugimori O, Shimizu K, Yamazawa K, Kawaguchi H, Nakamura K, Takato T, Nishimura R, Suzuki S, Anzai M, Chung UI, Sasaki N. Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J Artif Organs 2006;9:234–240

    Article  PubMed  CAS  Google Scholar 

  14. Hatoko M, Tada H, Tanaka A, Yurugi S, Niitsuma K, Iioka H. The use of calcium phosphate cement paste for the correction of the depressed nose deformity. J Craniofac Surg 2005;16:327–331

    Article  PubMed  Google Scholar 

  15. Tomita S, Molloy S, Jasper LE, Abe M, Belkoff SM. Biomechanical comparison of kyphoplasty with different bone cements. Spine 2004;29:1203–1207

    Article  PubMed  Google Scholar 

  16. Peltola SM, Melchels FP, Grijpma DW, Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008;40:268–280

    Article  PubMed  CAS  Google Scholar 

  17. Lee KW, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 2007;8:1077–1084

    Article  PubMed  CAS  Google Scholar 

  18. Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering — the rationale to use solid free-form fabrication techniques. J Cell Mol Med 2007;11:654–669

    Article  PubMed  CAS  Google Scholar 

  19. Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S, Hollister SJ, Feinberg SE. Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot 2007;3:207–216

    PubMed  CAS  Google Scholar 

  20. Eppley BL. Craniofacial reconstruction with computer-generated HTR patient-matched implants: use in primary bony tumor excision. J Craniofac Surg 2002;13:650–657

    Article  PubMed  Google Scholar 

  21. Tada H, Hatoko M, Tanaka A, Kuwahara M, Mashiba K, Yurugi S, Iioka H, Niitsuma K. Preshaped hydroxyapatite tricalcium-phosphate implant using three-dimensional computed tomography in the reconstruction of bone deformities of craniomaxillofacial region. J Craniofac Surg 2002;13:287–292

    Article  PubMed  Google Scholar 

  22. Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 2006;15: 321–328

    Article  PubMed  Google Scholar 

  23. Fierz FC, Beckmann F, Huser M, Irsen SH, Leukers B, Witte F, Degistirici O, Andronache A, Thie M, Müller B. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 2008;29:3799–3806

    Article  PubMed  CAS  Google Scholar 

  24. Camire CL, Nevsten P, Lidgren L, McCarthy I. The effect of crystallinity on strength development of alpha-TCP bone substitutes. J Biomed Mater Res B Appl Biomater 2006;79:159–165

    PubMed  CAS  Google Scholar 

  25. Yamada M, Shiota M, Yamashita Y, Kasugai S. Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of alpha- and beta-tricalcium phosphate in block grafts. J Biomed Mater Res B Appl Biomater 2007;82:139–148

    PubMed  Google Scholar 

  26. Okuda T, Ioku K, Yonezawa I, Minagi H, Gonda Y, Kawachi G, Kamitakahara M, Shibata Y, Murayama H, Kurosawa H, Ikeda T. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials 2008;29:2719–2728

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ung-il Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saijo, H., Igawa, K., Kanno, Y. et al. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs 12, 200–205 (2009). https://doi.org/10.1007/s10047-009-0462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-009-0462-7

Key words

Navigation