Advertisement

The Inflammasomes in Cardiovascular Disease

  • Gerardus P. J. van Hout
  • Lena Bosch
Chapter
Part of the Experientia Supplementum book series (EXS, volume 108)

Abstract

Cardiovascular disease (CVD) is the number one cause of death worldwide. The pathogenesis of various disease entities that comprise the area of CVD is complex and multifactorial. Inflammation serves a central role in these complex aetiologies. The inflammasomes are intracellular protein complexes activated by danger-associated molecular patterns (DAMPs) present in CVD such as atherosclerosis and myocardial infarction (MI). After a two-step process of priming and activation, inflammasomes are responsible for the formation of pro-inflammatory cytokines interleukin-1β and interleukin-18, inducing a signal transduction cascade resulting in a strong immune response that culminates in disease progression. In the past few years, increased interest has been raised regarding the inflammasomes in CVD. Inflammasome activation is thought to be involved in the pathogenesis of various disease entities such as atherosclerosis, MI and heart failure (HF). Interference with inflammasome-mediated signalling could reduce inflammation and attenuate the severity of disease. In this chapter we provide an overview of the current literature available on the role of inflammasome inhibition as a therapeutic intervention and the possible clinical implications for CVD.

Keywords

Cardiovascular disease Inflammasome Atherosclerosis Heart failure Myocardial infarction Inflammation 

References

  1. Abbate A, Salloum FN, Vecile E, Das A, Hoke NN, Straino S, Biondi-Zoccai GG, Houser JE, Qureshi IZ, Ownby ED, Gustini E, Biasucci LM, Severino A, Capogrossi MC, Vetrovec GW, Crea F, Baldi A, Kukreja RC, Dobrina A (2008) Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117(20):2670–2683.  https://doi.org/10.1161/circulationaha.107.740233CrossRefPubMedGoogle Scholar
  2. Abbate A, Van Tassell BW, Seropian IM, Toldo S, Robati R, Varma A, Salloum FN, Smithson L, Dinarello CA (2010a) Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J Heart Fail 12(4):319–322.  https://doi.org/10.1093/eurjhf/hfq017CrossRefPubMedGoogle Scholar
  3. Abbate A, Kontos MC, Grizzard JD, Biondi-Zoccai GG, Van Tassell BW, Robati R, Roach LM, Arena RA, Roberts CS, Varma A, Gelwix CC, Salloum FN, Hastillo A, Dinarello CA, Vetrovec GW (2010b) Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol 105(10):1371–1377.e1371.  https://doi.org/10.1016/j.amjcard.2009.12.059CrossRefPubMedGoogle Scholar
  4. Abbate A, Salloum FN, Van Tassell BW, Vecile E, Toldo S, Seropian I, Mezzaroma E, Dobrina A (2011) Alterations in the interleukin-1/interleukin-1 receptor antagonist balance modulate cardiac remodeling following myocardial infarction in the mouse. PLoS One 6(11):e27923.  https://doi.org/10.1371/journal.pone.0027923CrossRefPubMedPubMedCentralGoogle Scholar
  5. Abbate A, Van Tassell BW, Biondi-Zoccai G, Kontos MC, Grizzard JD, Spillman DW, Oddi C, Roberts CS, Melchior RD, Mueller GH, Abouzaki NA, Rengel LR, Varma A, Gambill ML, Falcao RA, Voelkel NF, Dinarello CA, Vetrovec GW (2013) Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol 111(10):1394–1400.  https://doi.org/10.1016/j.amjcard.2013.01.287CrossRefPubMedPubMedCentralGoogle Scholar
  6. Abderrazak A, Couchie D, Mahmood DF, Elhage R, Vindis C, Laffargue M, Mateo V, Buchele B, Ayala MR, El Gaafary M, Syrovets T, Slimane MN, Friguet B, Fulop T, Simmet T, El Hadri K, Rouis M (2015) Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 131(12):1061–1070.  https://doi.org/10.1161/circulationaha.114.013730CrossRefPubMedGoogle Scholar
  7. Afrasyab A, Qu P, Zhao Y, Peng K, Wang H, Lou D, Niu N, Yuan D (2016) Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart Vessel 31(8):1218–1229.  https://doi.org/10.1007/s00380-015-0723-8CrossRefGoogle Scholar
  8. Alabed S, Cabello JB, Irving GJ, Qintar M, Burls A (2014) Colchicine for pericarditis. Cochrane Database Syst Rev (8):Cd010652.  https://doi.org/10.1002/14651858.CD010652.pub2
  9. Aleksova A, Beltrami AP, Carriere C, Barbati G, Lesizza P, Perrieri-Montanino M, Isola M, Gentile P, Salvioni E, Not T, Agostoni P, Sinagra G (2017) Interleukin-1beta levels predict long-term mortality and need for heart transplantation in ambulatory patients affected by idiopathic dilated cardiomyopathy. Oncotarget 8(15):25131–25140.  https://doi.org/10.18632/oncotarget.15349CrossRefPubMedPubMedCentralGoogle Scholar
  10. Arslan F, de Kleijn DP, Pasterkamp G (2011) Innate immune signaling in cardiac ischemia. Nat Rev Cardiol 8(5):292–300.  https://doi.org/10.1038/nrcardio.2011.38CrossRefPubMedGoogle Scholar
  11. Bando S, Fukuda D, Soeki T, Nishimoto S, Uematsu E, Matsuura T, Ise T, Tobiume T, Yamaguchi K, Yagi S, Iwase T, Yamada H, Wakatsuki T, Shimabukuro M, Sata M (2015) Expression of NLRP3 in subcutaneous adipose tissue is associated with coronary atherosclerosis. Atherosclerosis 242(2):407–414.  https://doi.org/10.1016/j.atherosclerosis.2015.07.043CrossRefPubMedGoogle Scholar
  12. Baskar S, Klein AL, Zeft A (2016) The use of IL-1 receptor antagonist (anakinra) in idiopathic recurrent pericarditis: a narrative review. Cardiol Res Pract 2016:7840724.  https://doi.org/10.1155/2016/7840724CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhaskar V, Yin J, Mirza AM, Phan D, Vanegas S, Issafras H, Michelson K, Hunter JJ, Kantak SS (2011) Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in apolipoprotein E-deficient mice. Atherosclerosis 216(2):313–320.  https://doi.org/10.1016/j.atherosclerosis.2011.02.026CrossRefPubMedGoogle Scholar
  14. Blain H, Abdelmouttaleb I, Belmin J, Blain A, Floquet J, Gueant JL, Jeandel C (2002) Arterial wall production of cytokines in giant cell arteritis: results of a pilot study using human temporal artery cultures. J Gerontol A Biol Sci Med Sci 57(4):M241–M245CrossRefPubMedGoogle Scholar
  15. Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J, Rupprecht HJ (2002) Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 106(1):24–30CrossRefPubMedGoogle Scholar
  16. Bleda S, de Haro J, Varela C, Ferruelo A, Acin F (2016) Elevated levels of triglycerides and vldl-cholesterol provoke activation of nlrp1 inflammasome in endothelial cells. Int J Cardiol 220:52–55.  https://doi.org/10.1016/j.ijcard.2016.06.193CrossRefPubMedGoogle Scholar
  17. Bracey NA, Beck PL, Muruve DA, Hirota SA, Guo J, Jabagi H, Wright JR Jr, Macdonald JA, Lees-Miller JP, Roach D, Semeniuk LM, Duff HJ (2013) The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1beta. Exp Physiol 98(2):462–472.  https://doi.org/10.1113/expphysiol.2012.068338CrossRefPubMedGoogle Scholar
  18. Braunwald E (2015) The war against heart failure: the Lancet lecture. Lancet (London, England) 385(9970):812–824.  https://doi.org/10.1016/s0140-6736(14)61889-4CrossRefGoogle Scholar
  19. Brucato A, Imazio M, Gattorno M, Lazaros G, Maestroni S, Carraro M, Finetti M, Cumetti D, Carobbio A, Ruperto N, Marcolongo R, Lorini M, Rimini A, Valenti A, Erre GL, Sormani MP, Belli R, Gaita F, Martini A (2016) Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence: the AIRTRIP randomized clinical trial. JAMA 316(18):1906–1912.  https://doi.org/10.1001/jama.2016.15826CrossRefPubMedGoogle Scholar
  20. Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG (2008) Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol 173(1):57–67.  https://doi.org/10.2353/ajpath.2008.070974CrossRefPubMedPubMedCentralGoogle Scholar
  21. Butts B, Gary RA, Dunbar SB, Butler J (2015) The importance of NLRP3 inflammasome in heart failure. J Card Fail 21(7):586–593.  https://doi.org/10.1016/j.cardfail.2015.04.014CrossRefPubMedPubMedCentralGoogle Scholar
  22. Butts B, Butler J, Dunbar SB, Corwin E, Gary RA (2017) ASC methylation and interleukin-1beta are associated with aerobic capacity in heart failure. Med Sci Sports Exerc 49(6):1072–1078.  https://doi.org/10.1249/mss.0000000000001200CrossRefPubMedPubMedCentralGoogle Scholar
  23. Canada JM, Van Tassell BW, Christopher S, Oddi C, Abouzaki NA, Gambill ML, Mueller G, Melchior R, Shah KB, Dinarello CA, Abbate A, Arena R (2014) Clinical predictors of response to anakinra in patients with heart failure. Int J Cardiol 173(3):537–539.  https://doi.org/10.1016/j.ijcard.2014.03.023CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cavalli G, Pappalardo F, Mangieri A, Dinarello CA, Dagna L, Tresoldi M (2016) Treating life-threatening myocarditis by blocking interleukin-1. Crit Care Med 44(8):e751–e754.  https://doi.org/10.1097/ccm.0000000000001654CrossRefPubMedGoogle Scholar
  25. Cavalli G, Foppoli M, Cabrini L, Dinarello CA, Tresoldi M, Dagna L (2017) Interleukin-1 receptor blockade rescues myocarditis-associated end-stage heart failure. Front Immunol 8:131.  https://doi.org/10.3389/fimmu.2017.00131CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen Z, Martin M, Li Z, Shyy JY (2014) Endothelial dysfunction: the role of sterol regulatory element-binding protein-induced NOD-like receptor family pyrin domain-containing protein 3 inflammasome in atherosclerosis. Curr Opin Lipidol 25(5):339–349.  https://doi.org/10.1097/mol.0000000000000107CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen Y, Li X, Boini KM, Pitzer AL, Gulbins E, Zhang Y, Li PL (2015) Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochim Biophys Acta 1853(2):396–408.  https://doi.org/10.1016/j.bbamcr.2014.11.012CrossRefPubMedGoogle Scholar
  28. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Nunez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O'Neill LA (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21(3):248–255.  https://doi.org/10.1038/nm.3806CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dai Y, Dai D, Wang X, Ding Z, Mehta JL (2014) DPP-4 inhibitors repress NLRP3 inflammasome and interleukin-1beta via GLP-1 receptor in macrophages through protein kinase C pathway. Cardiovasc Drugs Ther 28(5):425–432.  https://doi.org/10.1007/s10557-014-6539-4CrossRefPubMedGoogle Scholar
  30. Dihlmann S, Erhart P, Mehrabi A, Nickkholgh A, Lasitschka F, Bockler D, Hakimi M (2014) Increased expression and activation of absent in melanoma 2 inflammasome components in lymphocytic infiltrates of abdominal aortic aneurysms. Mol Med (Cambridge, MA) 20:230–237.  https://doi.org/10.2119/molmed.2013.00162CrossRefGoogle Scholar
  31. Dinarello CA, van der Meer JW (2013) Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 25(6):469–484.  https://doi.org/10.1016/j.smim.2013.10.008CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dinarello CA, Novick D, Kim S, Kaplanski G (2013) Interleukin-18 and IL-18 binding protein. Front Immunol 4:289.  https://doi.org/10.3389/fimmu.2013.00289CrossRefPubMedPubMedCentralGoogle Scholar
  33. Domiciano TP, Wakita D, Jones HD, Crother TR, Verri WA Jr, Arditi M, Shimada K (2017) Quercetin inhibits inflammasome activation by interfering with ASC oligomerization and prevents interleukin-1 mediated mouse vasculitis. Sci Rep 7:41539.  https://doi.org/10.1038/srep41539CrossRefPubMedPubMedCentralGoogle Scholar
  34. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361.  https://doi.org/10.1038/nature08938CrossRefPubMedPubMedCentralGoogle Scholar
  35. Elhage R, Maret A, Pieraggi MT, Thiers JC, Arnal JF, Bayard F (1998) Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation 97(3):242–244CrossRefPubMedGoogle Scholar
  36. Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S, Bayard F, Hansson GK (2003) Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 59(1):234–240CrossRefPubMedGoogle Scholar
  37. Emmi G, Talarico R, Lopalco G, Cimaz R, Cantini F, Viapiana O, Olivieri I, Goldoni M, Vitale A, Silvestri E, Prisco D, Lapadula G, Galeazzi M, Iannone F, Cantarini L (2016) Efficacy and safety profile of anti-interleukin-1 treatment in Behcet’s disease: a multicenter retrospective study. Clin Rheumatol 35(5):1281–1286.  https://doi.org/10.1007/s10067-015-3004-0CrossRefPubMedGoogle Scholar
  38. Feng Y, Zou L, Si R, Nagasaka Y, Chao W (2010) Bone marrow MyD88 signaling modulates neutrophil function and ischemic myocardial injury. Am J Physiol Cell Physiol 299(4):C760–C769.  https://doi.org/10.1152/ajpcell.00155.2010CrossRefPubMedPubMedCentralGoogle Scholar
  39. Folco EJ, Sukhova GK, Quillard T, Libby P (2014) Moderate hypoxia potentiates interleukin-1beta production in activated human macrophages. Circ Res 115(10):875–883.  https://doi.org/10.1161/circresaha.115.304437CrossRefPubMedPubMedCentralGoogle Scholar
  40. Frangogiannis NG (2015) Interleukin-1 in cardiac injury, repair, and remodeling: pathophysiologic and translational concepts. Discoveries (Craiova, Romania) 3(1):e41.  https://doi.org/10.15190/d.2015.33CrossRefGoogle Scholar
  41. Fujisue K, Sugamura K, Kurokawa H, Matsubara J, Ishii M, Izumiya Y, Kaikita K, Sugiyama S (2017) Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction. Circ J 81(8):1174–1182.  https://doi.org/10.1253/circj.CJ-16-0949CrossRefPubMedGoogle Scholar
  42. Fury W, Tremoulet AH, Watson VE, Best BM, Shimizu C, Hamilton J, Kanegaye JT, Wei Y, Kao C, Mellis S, Lin C, Burns JC (2010) Transcript abundance patterns in Kawasaki disease patients with intravenous immunoglobulin resistance. Hum Immunol 71(9):865–873.  https://doi.org/10.1016/j.humimm.2010.06.008CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, Wu CL, Sano S, Muralidharan S, Rius C, Vuong J, Jacob S, Muralidhar V, Robertson AA, Cooper MA, Andres V, Hirschi KK, Martin KA, Walsh K (2017) Clonal hematopoiesis associated with Tet2 deficiency accelerates atherosclerosis development in mice. Science (New York, NY) 355(6327):842–847.  https://doi.org/10.1126/science.aag1381CrossRefGoogle Scholar
  44. Getz GS, Reardon CA (2015) Use of mouse models in atherosclerosis research. Methods Mol Biol (Clifton, NJ) 1339:1–16.  https://doi.org/10.1007/978-1-4939-2929-0_1CrossRefGoogle Scholar
  45. Gistera A, Hansson GK (2017) The immunology of atherosclerosis. Nat Rev Nephrol 13(6):368–380.  https://doi.org/10.1038/nrneph.2017.51CrossRefPubMedGoogle Scholar
  46. Hansson GK, Klareskog L (2011) Pulling down the plug on atherosclerosis: cooling down the inflammasome. Nat Med 17(7):790–791.  https://doi.org/10.1038/nm0711-790CrossRefPubMedGoogle Scholar
  47. Hendrikx T, Jeurissen ML, van Gorp PJ, Gijbels MJ, Walenbergh SM, Houben T, van Gorp R, Pottgens CC, Stienstra R, Netea MG, Hofker MH, Donners MM, Shiri-Sverdlov R (2015) Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in Ldlr(−/−) mice. FEBS J 282(12):2327–2338.  https://doi.org/10.1111/febs.13279CrossRefPubMedGoogle Scholar
  48. Hernandez-Rodriguez J, Segarra M, Vilardell C, Sanchez M, Garcia-Martinez A, Esteban MJ, Queralt C, Grau JM, Urbano-Marquez A, Palacin A, Colomer D, Cid MC (2004) Tissue production of pro-inflammatory cytokines (IL-1beta, TNFalpha and IL-6) correlates with the intensity of the systemic inflammatory response and with corticosteroid requirements in giant-cell arteritis. Rheumatology (Oxford) 43(3):294–301.  https://doi.org/10.1093/rheumatology/keh058CrossRefGoogle Scholar
  49. Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet (London, England) 383(9932):1933–1943.  https://doi.org/10.1016/s0140-6736(14)60107-0CrossRefGoogle Scholar
  50. Heymans S, Eriksson U, Lehtonen J, Cooper LT Jr (2016) The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol 68(21):2348–2364.  https://doi.org/10.1016/j.jacc.2016.09.937CrossRefPubMedGoogle Scholar
  51. Hofmann U, Frantz S (2013) How can we cure a heart “in flame”? A translational view on inflammation in heart failure. Basic Res Cardiol 108(4):356.  https://doi.org/10.1007/s00395-013-0356-yCrossRefPubMedPubMedCentralGoogle Scholar
  52. Hwang MW, Matsumori A, Furukawa Y, Ono K, Okada M, Iwasaki A, Hara M, Miyamoto T, Touma M, Sasayama S (2001) Neutralization of interleukin-1beta in the acute phase of myocardial infarction promotes the progression of left ventricular remodeling. J Am Coll Cardiol 38(5):1546–1553CrossRefPubMedGoogle Scholar
  53. Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS (2016) Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J 37(25):1959–1967.  https://doi.org/10.1093/eurheartj/ehv653CrossRefPubMedGoogle Scholar
  54. Jong WM, Leemans JC, Weber NC, Juffermans NP, Schultz MJ, Hollmann MW, Zuurbier CJ (2014) Nlrp3 plays no role in acute cardiac infarction due to low cardiac expression. Int J Cardiol 177(1):41–43.  https://doi.org/10.1016/j.ijcard.2014.09.148CrossRefPubMedGoogle Scholar
  55. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123(6):594–604.  https://doi.org/10.1161/circulationaha.110.982777CrossRefPubMedGoogle Scholar
  56. Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y, Asano M, Moriwaki H, Seishima M (2003) Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 23(4):656–660.  https://doi.org/10.1161/01.atv.0000064374.15232.c3CrossRefPubMedGoogle Scholar
  57. L’Homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, Legrand-Poels S (2013) Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res 54(11):2998–3008.  https://doi.org/10.1194/jlr.M037861CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lee Y, Schulte DJ, Shimada K, Chen S, Crother TR, Chiba N, Fishbein MC, Lehman TJ, Arditi M (2012) Interleukin-1beta is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation 125(12):1542–1550.  https://doi.org/10.1161/circulationaha.111.072769CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lee Y, Wakita D, Dagvadorj J, Shimada K, Chen S, Huang G, Lehman TJ, Fishbein MC, Hoffman HM, Crother TR, Arditi M (2015) IL-1 signaling is critically required in stromal cells in kawasaki disease vasculitis mouse model: role of both IL-1alpha and IL-1beta. Arterioscler Thromb Vasc Biol 35(12):2605–2616.  https://doi.org/10.1161/atvbaha.115.306475CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lehman TJ, Walker SM, Mahnovski V, McCurdy D (1985) Coronary arteritis in mice following the systemic injection of group B Lactobacillus casei cell walls in aqueous suspension. Arthritis Rheum 28(6):652–659CrossRefPubMedGoogle Scholar
  61. Leung DY, Cotran RS, Kurt-Jones E, Burns JC, Newburger JW, Pober JS (1989) Endothelial cell activation and high interleukin-1 secretion in the pathogenesis of acute Kawasaki disease. Lancet (London, England) 2(8675):1298–1302CrossRefGoogle Scholar
  62. Li X, Zhang Y, Xia M, Gulbins E, Boini KM, Li PL (2014) Activation of Nlrp3 inflammasomes enhances macrophage lipid-deposition and migration: implication of a novel role of inflammasome in atherogenesis. PLoS One 9(1):e87552.  https://doi.org/10.1371/journal.pone.0087552CrossRefPubMedPubMedCentralGoogle Scholar
  63. Libby P, Hansson GK (2015) Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res 116(2):307–311.  https://doi.org/10.1161/circresaha.116.301313CrossRefPubMedPubMedCentralGoogle Scholar
  64. Liu W, Zhang X, Zhao M, Zhang X, Chi J, Liu Y, Lin F, Fu Y, Ma D, Yin X (2015) Activation in M1 but not M2 macrophages contributes to cardiac remodeling after myocardial infarction in rats: a critical role of the calcium sensing receptor/NRLP3 inflammasome. Cell Physiol Biochem 35(6):2483–2500.  https://doi.org/10.1159/000374048CrossRefPubMedGoogle Scholar
  65. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241.  https://doi.org/10.1038/35025203CrossRefPubMedPubMedCentralGoogle Scholar
  66. Maekawa Y, Anzai T, Yoshikawa T, Asakura Y, Takahashi T, Ishikawa S, Mitamura H, Ogawa S (2002) Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling. J Am Coll Cardiol 39(2):241–246CrossRefPubMedGoogle Scholar
  67. Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104(14):1598–1603CrossRefPubMedGoogle Scholar
  68. Mallat Z, Heymes C, Corbaz A, Logeart D, Alouani S, Cohen-Solal A, Seidler T, Hasenfuss G, Chvatchko Y, Shah AM, Tedgui A (2004) Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J 18(14):1752–1754.  https://doi.org/10.1096/fj.04-2426fjeCrossRefPubMedGoogle Scholar
  69. Marchetti C, Chojnacki J, Toldo S, Mezzaroma E, Tranchida N, Rose SW, Federici M, Van Tassell BW, Zhang S, Abbate A (2014) A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol 63(4):316–322.  https://doi.org/10.1097/fjc.0000000000000053CrossRefPubMedPubMedCentralGoogle Scholar
  70. Marchetti C, Toldo S, Chojnacki J, Mezzaroma E, Liu K, Salloum FN, Nordio A, Carbone S, Mauro AG, Das A, Zalavadia AA, Halquist MS, Federici M, Van Tassell BW, Zhang S, Abbate A (2015) Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J Cardiovasc Pharmacol 66(1):1–8.  https://doi.org/10.1097/fjc.0000000000000247CrossRefPubMedPubMedCentralGoogle Scholar
  71. Martinez GJ, Robertson S, Barraclough J, Xia Q, Mallat Z, Bursill C, Celermajer DS, Patel S (2015) Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J Am Heart Assoc 4(8):e002128.  https://doi.org/10.1161/jaha.115.002128CrossRefPubMedPubMedCentralGoogle Scholar
  72. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241.  https://doi.org/10.1038/nature04516CrossRefPubMedGoogle Scholar
  73. Menu P, Pellegrin M, Aubert JF, Bouzourene K, Tardivel A, Mazzolai L, Tschopp J (2011) Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis 2:e137.  https://doi.org/10.1038/cddis.2011.18CrossRefPubMedPubMedCentralGoogle Scholar
  74. Merkle S, Frantz S, Schon MP, Bauersachs J, Buitrago M, Frost RJ, Schmitteckert EM, Lohse MJ, Engelhardt S (2007) A role for caspase-1 in heart failure. Circ Res 100(5):645–653.  https://doi.org/10.1161/01.res.0000260203.55077.61CrossRefPubMedGoogle Scholar
  75. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 108(49):19725–19730.  https://doi.org/10.1073/pnas.1108586108CrossRefPubMedGoogle Scholar
  76. Mezzaroma E, Marchetti C, Toldo S (2014) Letter by Mezzaroma, et al regarding article, “NLRP3 inflammasome as a therapeutic target in myocardial infarction”. Int Heart J 55(4):379CrossRefPubMedGoogle Scholar
  77. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL (2013) Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 61(4):404–410.  https://doi.org/10.1016/j.jacc.2012.10.027CrossRefPubMedGoogle Scholar
  78. Noji Y (2016) Anakinra in fulminant myocarditis: targeting interleukin-1 and the inflammasome formation. Crit Care Med 44(8):1630–1631.  https://doi.org/10.1097/ccm.0000000000001769CrossRefPubMedGoogle Scholar
  79. Palomino-Morales RJ, Vazquez-Rodriguez TR, Torres O, Morado IC, Castaneda S, Miranda-Filloy JA, Callejas-Rubio JL, Fernandez-Gutierrez B, Gonzalez-Gay MA, Martin J (2010) Association between IL-18 gene polymorphisms and biopsy-proven giant cell arteritis. Arthritis Res Ther 12(2):R51.  https://doi.org/10.1186/ar2962CrossRefPubMedPubMedCentralGoogle Scholar
  80. Paramel Varghese G, Folkersen L, Strawbridge RJ, Halvorsen B, Yndestad A, Ranheim T, Krohg-Sorensen K, Skjelland M, Espevik T, Aukrust P, Lengquist M, Hedin U, Jansson JH, Fransen K, Hansson GK, Eriksson P, Sirsjo A (2016) NLRP3 inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc 5(5):e003031.  https://doi.org/10.1161/jaha.115.003031CrossRefPubMedPubMedCentralGoogle Scholar
  81. Peng K, Liu L, Wei D, Lv Y, Wang G, Xiong W, Wang X, Altaf A, Wang L, He D, Wang H, Qu P (2015) P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation. Int J Mol Med 35(5):1179–1188.  https://doi.org/10.3892/ijmm.2015.2129CrossRefPubMedPubMedCentralGoogle Scholar
  82. Platis A, Yu Q, Moore D, Khojeini E, Tsau P, Larson D (2008) The effect of daily administration of IL-18 on cardiac structure and function. Perfusion 23(4):237–242.  https://doi.org/10.1177/0267659108101511CrossRefPubMedGoogle Scholar
  83. Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA (2001) Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci USA 98(5):2871–2876.  https://doi.org/10.1073/pnas.041611398CrossRefPubMedGoogle Scholar
  84. Raeburn CD, Dinarello CA, Zimmerman MA, Calkins CM, Pomerantz BJ, McIntyre RC Jr, Harken AH, Meng X (2002) Neutralization of IL-18 attenuates lipopolysaccharide-induced myocardial dysfunction. Am J Phys Heart Circ Phys 283(2):H650–H657.  https://doi.org/10.1152/ajpheart.00043.2002CrossRefGoogle Scholar
  85. Ramirez GA, Maugeri N, Sabbadini MG, Rovere-Querini P, Manfredi AA (2014) Intravascular immunity as a key to systemic vasculitis: a work in progress, gaining momentum. Clin Exp Immunol 175(2):150–166.  https://doi.org/10.1111/cei.12223CrossRefPubMedPubMedCentralGoogle Scholar
  86. Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, Ting JP, Virgin HW, Kastan MB, Semenkovich CF (2012) Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15(4):534–544.  https://doi.org/10.1016/j.cmet.2012.02.011CrossRefPubMedPubMedCentralGoogle Scholar
  87. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131.  https://doi.org/10.1056/NEJMoa1707914CrossRefPubMedGoogle Scholar
  88. Salloum FN, Chau V, Varma A, Hoke NN, Toldo S, Biondi-Zoccai GG, Crea F, Vetrovec GW, Abbate A (2009) Anakinra in experimental acute myocardial infarction – does dosage or duration of treatment matter? Cardiovasc Drugs Ther 23(2):129–135.  https://doi.org/10.1007/s10557-008-6154-3CrossRefPubMedGoogle Scholar
  89. Sandanger O, Ranheim T, Vinge LE, Bliksoen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 99(1):164–174.  https://doi.org/10.1093/cvr/cvt091CrossRefPubMedGoogle Scholar
  90. Sandanger O, Gao E, Ranheim T, Bliksoen M, Kaasboll OJ, Alfsnes K, Nymo SH, Rashidi A, Ohm IK, Attramadal H, Aukrust P, Vinge LE, Yndestad A (2016) NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem Biophys Res Commun 469(4):1012–1020.  https://doi.org/10.1016/j.bbrc.2015.12.051CrossRefPubMedGoogle Scholar
  91. Serrano A, Carmona FD, Castaneda S, Solans R, Hernandez-Rodriguez J, Cid MC, Prieto-Gonzalez S, Miranda-Filloy JA, Rodriguez-Rodriguez L, Morado IC, Gomez-Vaquero C, Blanco R, Sopena B, Ortego-Centeno N, Unzurrunzaga A, Mari-Alfonso B, Sanchez-Martin J, Garcia-Villanueva MJ, Hidalgo-Conde A, Pazzola G, Boiardi L, Salvarani C, Gonzalez-Gay MA, Martin J (2013) Evidence of association of the NLRP1 gene with giant cell arteritis. Ann Rheum Dis 72(4):628–630.  https://doi.org/10.1136/annrheumdis-2012-202609CrossRefPubMedGoogle Scholar
  92. Shah Z, Kampfrath T, Deiuliis JA, Zhong J, Pineda C, Ying Z, Xu X, Lu B, Moffatt-Bruce S, Durairaj R, Sun Q, Mihai G, Maiseyeu A, Rajagopalan S (2011) Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124(21):2338–2349.  https://doi.org/10.1161/circulationaha.111.041418CrossRefPubMedPubMedCentralGoogle Scholar
  93. Shahriar Nabili PB, Roberts F, Gracie A, McFadzean R (2008) Local expression of IL-18 in the temporal artery does not correlate with clinical manifestations of giant cell arteritis. Neuro-Ophthalmology 32(1):3–6CrossRefGoogle Scholar
  94. Shi X, Xie WL, Kong WW, Chen D, Qu P (2015) Expression of the NLRP3 inflammasome in carotid atherosclerosis. J Stroke Cerebrovasc Dis 24(11):2455–2466.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.03.024CrossRefPubMedGoogle Scholar
  95. Shimizu K, Mitchell RN, Libby P (2006) Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26(5):987–994.  https://doi.org/10.1161/01.ATV.0000214999.12921.4fCrossRefPubMedGoogle Scholar
  96. Stachon P, Heidenreich A, Merz J, Hilgendorf I, Wolf D, Willecke F, von Garlen S, Albrecht P, Hardtner C, Ehrat N, Hoppe N, Reinohl J, von Zur Muhlen C, Bode C, Idzko M, Zirlik A (2017) P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation 135(25):2524–2533.  https://doi.org/10.1161/circulationaha.117.027400CrossRefPubMedGoogle Scholar
  97. Stack J, Ryan J, McCarthy G (2015) Colchicine: new insights to an old drug. Am J Ther 22(5):e151–e157.  https://doi.org/10.1097/01.mjt.0000433937.07244.e1CrossRefPubMedGoogle Scholar
  98. Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van 't Hof A, Widimsky P, Zahger D (2012) ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33(20):2569–2619.  https://doi.org/10.1093/eurheartj/ehs215CrossRefPubMedGoogle Scholar
  99. Sun W, Pang Y, Liu Z, Sun L, Liu B, Xu M, Dong Y, Feng J, Jiang C, Kong W, Wang X (2015) Macrophage inflammasome mediates hyperhomocysteinemia-aggravated abdominal aortic aneurysm. J Mol Cell Cardiol 81:96–106.  https://doi.org/10.1016/j.yjmcc.2015.02.005CrossRefPubMedGoogle Scholar
  100. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25):2981–2988CrossRefPubMedGoogle Scholar
  101. Suzuki H, Uemura S, Tone S, Iizuka T, Koike M, Hirayama K, Maeda J (1996) Effects of immunoglobulin and gamma-interferon on the production of tumour necrosis factor-alpha and interleukin-1 beta by peripheral blood monocytes in the acute phase of Kawasaki disease. Eur J Pediatr 155(4):291–296CrossRefPubMedGoogle Scholar
  102. Suzuki K, Murtuza B, Smolenski RT, Sammut IA, Suzuki N, Kaneda Y, Yacoub MH (2001) Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation 104(12 Suppl 1):I308–I303CrossRefPubMedGoogle Scholar
  103. Takahashi T, Hiasa Y, Ohara Y, Miyazaki S, Ogura R, Suzuki N, Hosokawa S, Kishi K, Ohtani R (2008) Relationship of admission neutrophil count to microvascular injury, left ventricular dilation, and long-term outcome in patients treated with primary angioplasty for acute myocardial infarction. Circ J 72(6):867–872CrossRefPubMedGoogle Scholar
  104. Takahashi K, Oharaseki T, Yokouchi Y (2014) Update on etio and immunopathogenesis of Kawasaki disease. Curr Opin Rheumatol 26(1):31–36.  https://doi.org/10.1097/bor.0000000000000010CrossRefPubMedGoogle Scholar
  105. Thacker SG, Zarzour A, Chen Y, Alcicek MS, Freeman LA, Sviridov DO, Demosky SJ Jr, Remaley AT (2016) High-density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology 149(3):306–319.  https://doi.org/10.1111/imm.12638CrossRefPubMedPubMedCentralGoogle Scholar
  106. Toldo S, Mezzaroma E, Van Tassell BW, Farkas D, Marchetti C, Voelkel NF, Abbate A (2013) Interleukin-1beta blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp Physiol 98(3):734–745.  https://doi.org/10.1113/expphysiol.2012.069831CrossRefPubMedGoogle Scholar
  107. Toldo S, Mezzaroma E, O'Brien L, Marchetti C, Seropian IM, Voelkel NF, Van Tassell BW, Dinarello CA, Abbate A (2014a) Interleukin-18 mediates interleukin-1-induced cardiac dysfunction. Am J Phys Heart Circ Phys 306(7):H1025–H1031.  https://doi.org/10.1152/ajpheart.00795.2013CrossRefGoogle Scholar
  108. Toldo S, Kannan H, Bussani R, Anzini M, Sonnino C, Sinagra G, Merlo M, Mezzaroma E, De-Giorgio F, Silvestri F, Van Tassell BW, Baldi A, Abbate A (2014b) Formation of the inflammasome in acute myocarditis. Int J Cardiol 171(3):e119–e121.  https://doi.org/10.1016/j.ijcard.2013.12.137CrossRefPubMedGoogle Scholar
  109. Toldo S, Mezzaroma E, McGeough MD, Pena CA, Marchetti C, Sonnino C, Van Tassell BW, Salloum FN, Voelkel NF, Hoffman HM, Abbate A (2015) Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovasc Res 105(2):203–212.  https://doi.org/10.1093/cvr/cvu259CrossRefPubMedGoogle Scholar
  110. Toldo S, Marchetti C, Mauro AG, Chojnacki J, Mezzaroma E, Carbone S, Zhang S, Van Tassell B, Salloum FN, Abbate A (2016) Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse. Int J Cardiol 209:215–220.  https://doi.org/10.1016/j.ijcard.2016.02.043CrossRefPubMedGoogle Scholar
  111. Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4(2):95–104.  https://doi.org/10.1038/nrm1019CrossRefPubMedGoogle Scholar
  112. Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Hida S, Sagara J, Taniguchi S, Takahashi M (2012) Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun 425(2):162–168.  https://doi.org/10.1016/j.bbrc.2012.07.058CrossRefPubMedGoogle Scholar
  113. Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Yoshimura K, Aoki H, Tsutsui H, Noda T, Sagara J, Taniguchi S, Takahashi M (2015) Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm. Arterioscler Thromb Vasc Biol 35(1):127–136.  https://doi.org/10.1161/atvbaha.114.303763CrossRefPubMedGoogle Scholar
  114. Valle Raleigh J, Mauro AG, Devarakonda T, Marchetti C, He J, Kim E, Filippone S, Das A, Toldo S, Abbate A, Salloum FN (2017) Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism. Cardiovasc Res 113(6):609–619.  https://doi.org/10.1093/cvr/cvw246CrossRefPubMedGoogle Scholar
  115. van der Laan AM, Nahrendorf M, Piek JJ (2012a) Healing and adverse remodelling after acute myocardial infarction: role of the cellular immune response. Heart 98(18):1384–1390.  https://doi.org/10.1136/heartjnl-2012-301623CrossRefPubMedGoogle Scholar
  116. van der Laan AM, Hirsch A, Robbers LF, Nijveldt R, Lommerse I, Delewi R, van der Vleuten PA, Biemond BJ, Zwaginga JJ, van der Giessen WJ, Zijlstra F, van Rossum AC, Voermans C, van der Schoot CE, Piek JJ (2012b) A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction: monocytes and myocardial infarction. Am Heart J 163(1):57–65.e52.  https://doi.org/10.1016/j.ahj.2011.09.002CrossRefPubMedGoogle Scholar
  117. van Hout GP, Arslan F, Pasterkamp G, Hoefer IE (2016) Targeting danger-associated molecular patterns after myocardial infarction. Expert Opin Ther Targets 20(2):223–239.  https://doi.org/10.1517/14728222.2016.1088005CrossRefPubMedGoogle Scholar
  118. van Hout GP, Bosch L, Ellenbroek GH, de Haan JJ, van Solinge WW, Cooper MA, Arslan F, de Jager SC, Robertson AA, Pasterkamp G, Hoefer IE (2017) The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 38(11):828–836.  https://doi.org/10.1093/eurheartj/ehw247CrossRefPubMedGoogle Scholar
  119. Van Tassell BW, Varma A, Salloum FN, Das A, Seropian IM, Toldo S, Smithson L, Hoke NN, Chau VQ, Robati R, Abbate A (2010) Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J Cardiovasc Pharmacol 55(2):117–122.  https://doi.org/10.1097/FJC.0b013e3181c87e53CrossRefPubMedGoogle Scholar
  120. Van Tassell BW, Arena RA, Toldo S, Mezzaroma E, Azam T, Seropian IM, Shah K, Canada J, Voelkel NF, Dinarello CA, Abbate A (2012) Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One 7(3):e33438.  https://doi.org/10.1371/journal.pone.0033438CrossRefPubMedPubMedCentralGoogle Scholar
  121. Van Tassell BW, Toldo S, Mezzaroma E, Abbate A (2013a) Targeting interleukin-1 in heart disease. Circulation 128(17):1910–1923.  https://doi.org/10.1161/circulationaha.113.003199CrossRefPubMedPubMedCentralGoogle Scholar
  122. Van Tassell BW, Seropian IM, Toldo S, Mezzaroma E, Abbate A (2013b) Interleukin-1beta induces a reversible cardiomyopathy in the mouse. Inflamm Res 62(7):637–640.  https://doi.org/10.1007/s00011-013-0625-0CrossRefPubMedGoogle Scholar
  123. Van Tassell BW, Arena R, Biondi-Zoccai G, McNair Canada J, Oddi C, Abouzaki NA, Jahangiri A, Falcao RA, Kontos MC, Shah KB, Voelkel NF, Dinarello CA, Abbate A (2014) Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol 113(2):321–327.  https://doi.org/10.1016/j.amjcard.2013.08.047CrossRefPubMedGoogle Scholar
  124. Van Tassell BW, Raleigh JM, Abbate A (2015) Targeting interleukin-1 in heart failure and inflammatory heart disease. Curr Heart Fail Rep 12(1):33–41.  https://doi.org/10.1007/s11897-014-0231-7CrossRefPubMedGoogle Scholar
  125. Vander Heide RS, Steenbergen C (2013) Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circ Res 113(4):464–477.  https://doi.org/10.1161/circresaha.113.300765CrossRefPubMedGoogle Scholar
  126. Varghese GP, Fransen K, Hurtig-Wennlof A, Bengtsson T, Jansson JH, Sirsjo A (2013) Q705K variant in NLRP3 gene confers protection against myocardial infarction in female individuals. Biomed Rep 1(6):879–882.  https://doi.org/10.3892/br.2013.155CrossRefPubMedPubMedCentralGoogle Scholar
  127. Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61(3):481–497.  https://doi.org/10.1016/j.cardiores.2003.10.011CrossRefPubMedGoogle Scholar
  128. Wang X, Feuerstein GZ, Gu JL, Lysko PG, Yue TL (1995) Interleukin-1 beta induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis 115(1):89–98CrossRefPubMedGoogle Scholar
  129. Wang Y, Gao B, Xiong S (2014) Involvement of NLRP3 inflammasome in CVB3-induced viral myocarditis. Am J Phys Heart Circ Phys 307(10):H1438–H1447.  https://doi.org/10.1152/ajpheart.00441.2014CrossRefGoogle Scholar
  130. Wen C, Yang X, Yan Z, Zhao M, Yue X, Cheng X, Zheng Z, Guan K, Dou J, Xu T, Zhang Y, Song T, Wei C, Zhong H (2013) Nalp3 inflammasome is activated and required for vascular smooth muscle cell calcification. Int J Cardiol 168(3):2242–2247.  https://doi.org/10.1016/j.ijcard.2013.01.211CrossRefPubMedGoogle Scholar
  131. Weng KP, Hsieh KS, Ho TY, Huang SH, Lai CR, Chiu YT, Huang SC, Lin CC, Hwang YT, Ger LP (2010) IL-1B polymorphism in association with initial intravenous immunoglobulin treatment failure in Taiwanese children with Kawasaki disease. Circ J 74(3):544–551CrossRefPubMedGoogle Scholar
  132. Whitman SC, Ravisankar P, Daugherty A (2002) Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res 90(2):E34–E38CrossRefPubMedGoogle Scholar
  133. Woldbaek PR, Sande JB, Stromme TA, Lunde PK, Djurovic S, Lyberg T, Christensen G, Tonnessen T (2005) Daily administration of interleukin-18 causes myocardial dysfunction in healthy mice. Am J Phys Heart Circ Phys 289(2):H708–H714.  https://doi.org/10.1152/ajpheart.01179.2004CrossRefGoogle Scholar
  134. Wu X, Cakmak S, Wortmann M, Hakimi M, Zhang J, Bockler D, Dihlmann S (2016) Sex- and disease-specific inflammasome signatures in circulating blood leukocytes of patients with abdominal aortic aneurysm. Mol Med (Cambridge, MA) 22:508–518.  https://doi.org/10.2119/molmed.2016.00035CrossRefGoogle Scholar
  135. Wu D, Ren P, Zheng Y, Zhang L, Xu G, Xie W, Lloyd EE, Zhang S, Zhang Q, Curci JA, Coselli JS, Milewicz DM, Shen YH, LeMaire SA (2017) NLRP3 (nucleotide oligomerization domain-like receptor family, pyrin domain containing 3)-caspase-1 inflammasome degrades contractile proteins: implications for aortic biomechanical dysfunction and aneurysm and dissection formation. Arterioscler Thromb Vasc Biol 37(4):694–706.  https://doi.org/10.1161/atvbaha.116.307648CrossRefPubMedPubMedCentralGoogle Scholar
  136. Xiao H, Lu M, Lin TY, Chen Z, Chen G, Wang WC, Marin T, Shentu TP, Wen L, Gongol B, Sun W, Liang X, Chen J, Huang HD, Pedra JH, Johnson DA, Shyy JY (2013) Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128(6):632–642.  https://doi.org/10.1161/circulationaha.113.002714CrossRefPubMedPubMedCentralGoogle Scholar
  137. Yajima N, Takahashi M, Morimoto H, Shiba Y, Takahashi Y, Masumoto J, Ise H, Sagara J, Nakayama J, Taniguchi S, Ikeda U (2008) Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation 117(24):3079–3087.  https://doi.org/10.1161/circulationaha.107.746453CrossRefPubMedGoogle Scholar
  138. Yang TC, Chang PY, Lu SC (2017) L5-LDL from ST-elevation myocardial infarction patients induces IL-1beta production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Phys Heart Circ Phys 312(2):H265–h274.  https://doi.org/10.1152/ajpheart.00509.2016CrossRefGoogle Scholar
  139. Yuksel S, Eren E, Hatemi G, Sahillioglu AC, Gultekin Y, Demiroz D, Akdis C, Fresko I, Ozoren N (2014) Novel NLRP3/cryopyrin mutations and pro-inflammatory cytokine profiles in Behcet’s syndrome patients. Int Immunol 26(2):71–81.  https://doi.org/10.1093/intimm/dxt046CrossRefPubMedGoogle Scholar
  140. Zheng F, Xing S, Gong Z, Mu W, Xing Q (2014) Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediat Inflamm 2014:507208.  https://doi.org/10.1155/2014/507208CrossRefGoogle Scholar
  141. Zuurbier CJ, Jong WM, Eerbeek O, Koeman A, Pulskens WP, Butter LM, Leemans JC, Hollmann MW (2012) Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling. PLoS One 7(7):e40643.  https://doi.org/10.1371/journal.pone.0040643CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of CardiologyUtrecht University Medical CenterUtrechtThe Netherlands
  2. 2.Department of Experimental CardiologyUtrecht University Medical CenterUtrechtThe Netherlands

Personalised recommendations