Skip to main content

Complement and Malaria in Pregnancy

  • Chapter
  • First Online:
Complement Activation in Malaria Immunity and Pathogenesis

Abstract

More than half of the world’s pregnancies are at risk of malaria infection each year. Malaria infection during pregnancy increases the risk of adverse birth outcomes including stillbirth, preterm birth, and fetal growth restriction. Inflammation at the maternal-fetal interface and dysregulated angiogenesis are thought to underlie malaria-associated adverse birth outcomes. Uniquely, the complement system, through its impact on both inflammatory and angiogenic pathways, has been implicated in the pathobiology of malaria-induced adverse birth outcomes. Tight regulation of the complement system is critical for healthy pregnancies and its dysregulation has been linked to poor outcomes in non-infectious pathological pregnancy syndromes. Further, blockade of excessive complement activation can reverse or prevent malaria-induced pregnancy complications including placental vascular insufficiency, low birth weight, and neurodevelopmental deficits. Together, these data indicate a critical role for complement in the pathophysiology of malaria in pregnancy and suggest that it is a target for drugs to reduce malaria-mediated adverse pregnancy outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB et al (2009) Meta-analysis of neurobehavioural outcomes in very preterm and/or very low birth weight children. Pediatrics 124:717–728

    Article  PubMed  Google Scholar 

  • Abrahams VM, Mor G (2005) Toll-like receptors and their role in the trophoblast. Placenta 26:540–547

    Article  CAS  PubMed  Google Scholar 

  • Albieri A, Kipnis T, Bevilacqua E (1999) A possible role for activated complement component 3 in phagocytic activity exhibited by the mouse trophoblast. Am J Reprod Immunol 41:343–352

    Article  CAS  PubMed  Google Scholar 

  • Bertolaccini ML, Contento G, Lennen R et al (2016) Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome. J Autoimmun 75:30–38

    Article  CAS  PubMed  Google Scholar 

  • Bhutta AT, Cleves MA, Casey PH et al (2002) Cognitive and behavioural outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288:728–737

    Article  PubMed  Google Scholar 

  • Biryukov S, Stoute JA (2014) Complement activation in malaria: friend or foe? Trends Mol Med 20:293–301

    Article  CAS  PubMed  Google Scholar 

  • Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Bulla R, Agostinis C, Bossi F et al (2008) Decidual endothelial cells express surface-bound C1q as a molecular bridge between endovascular trophoblast and decidual endothelium. Mol Immunol 45:2629–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulla R, Bossi F, Agostinis C et al (2009) Complement production by trophoblast cells at the feto-maternal interface. J Reprod Immunol 82:119–125

    Article  CAS  PubMed  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  Google Scholar 

  • Conroy A, Serghides L, Finney C et al (2009) C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria. PLoS One 4:e4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conroy AL, Silver KL, Zhong K et al (2013) Complement activation and the resulting placental vascular insufficiency drives fetal growth restriction associated with placental malaria. Cell Host Microbe 13:215–226

    Article  CAS  PubMed  Google Scholar 

  • Coulthard LG, Hawksworth OA, Li R et al (2017) Complement C5aR1 signaling promotes polarization and proliferation of embryonic neural progenitor cells through PKCζ. J Neurosci 37(22):5395–5407

    Article  CAS  PubMed  Google Scholar 

  • Dellicour S, Tatem AJ, Guerra CA et al (2010) Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med 7:e1000221

    Article  PubMed  PubMed Central  Google Scholar 

  • Derzsy Z, Prohaszka Z, Rigo J Jr et al (2010) Activation of the complement system in normal pregnancy and preeclampsia. Mol Immunol 47:1500–1506

    Article  CAS  PubMed  Google Scholar 

  • Desai M, ter Kuile FO, Nosten F et al (2007) Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7:93–104

    Article  PubMed  Google Scholar 

  • Duffy MF, Maier AG, Byrne TJ et al (2006) VAR2CSA is the principal ligand for chondroitin sulphate A in two allogeneic isolates of plasmodium falciparum. Mol Biochem Parasitol 148:117–124

    Article  CAS  PubMed  Google Scholar 

  • Fonseca MI, Ager RR, Chu SH et al (2009) Treatment with a C5aR antagonist decreases pathology and enhances behavioural performance in murine models of Alzheimer’s disease. J Immunol 183:1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fried M, Nosten F, Brockman A et al (1998) Maternal antibodies block malaria. Nature 395:851–852

    Article  CAS  PubMed  Google Scholar 

  • Gagnon R (2003) Placental insufficiency and its consequences. Eur J Obstet Gynecol Reprod Biol 110:S99–S107

    Article  PubMed  Google Scholar 

  • Gallagher D, Norman AA, Woodard CL et al (2013) Transient maternal IL-6 mediates long-lasting changes in neural stem cell pools by deregulating an endogenous self-renewal pathway. Cell Stem Cell 13:564–576

    Article  CAS  PubMed  Google Scholar 

  • Girardi G, Berman J, Redecha P et al (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest 112:1644–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardi G, Yarilin D, Thurman JM et al (2006) Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 203:2165–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JM, Franzke CW, Yang F et al (2011) Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. Am J Pathol 179:838–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guseh SH, Feinberg BB, Dawood HY et al (2015) Urinary excretion of C5b-9 is associated with the anti-angiogenic state in severe preeclampsia. Am J Reprod Immunol 73:437–444

    Article  CAS  PubMed  Google Scholar 

  • Guyatt HL, Snow RW (2001) Malaria in pregnancy as an indirect cause of infant mortality in sub-Saharan Africa. Trans R Soc Trop Med Hyg 95:569–576

    Article  CAS  PubMed  Google Scholar 

  • Haeger M, Unander M, Norder-Hansson B et al (1992) Complement, neutrophil, and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 79:19–26

    PubMed  CAS  Google Scholar 

  • Holers VM, Girardi G, Mo L et al (2002) Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med 195:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indredavik MS, Vik T, Evensen KA et al (2010) Perinatal risk and psychiatric outcome in adolescents born preterm with very low birth weight or small for gestational age. J Dev Behav Pediatr 31:286–294

    Article  PubMed  Google Scholar 

  • Keen J, Serghides L, Avi K et al (2007) HIV impairs opsonic phagocytic clearance of pregnancy-associated malaria parasites. PLoS Med 4:e181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly R, Arnold L, Richards S et al (2010) The management of pregnancy in paroxysmal nocturnal haemoglobinuria on long term eculizumab. Br J Haematol 149:446–450

    Article  CAS  PubMed  Google Scholar 

  • Kelly R, Hochsmann B, Szer J et al (2015) Eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med 373:1032–1039

    Article  CAS  Google Scholar 

  • Knuesel I, Chicha L, Britschgi M et al (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10:643–660

    Article  CAS  PubMed  Google Scholar 

  • Levine RJ, Maynard SE, Qian C et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Oza S, Hogan D et al (2015) Global, regional, and national causes of child mortality in 2000-2013, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385:430–440

    Article  PubMed  Google Scholar 

  • Luu TM, Rehman Mian MO, Nuyt AM (2017) Long-term impact of preterm birth: neurodevelopmental and physical health outcomes. Clin Perinatol 44:305–314

    Article  PubMed  Google Scholar 

  • Lynch AM, Salmon JE (2010) Dysregulated complement activation as a common pathway of injury in preeclampsia and other pregnancy complications. Placenta 31:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch AM, Gibbs RS, Murphy JR et al (2008) Complement activation fragment Bb in early pregnancy and spontaneous preterm birth. Am J Obstet Gynecol 199:354.e1–354.e8

    Article  CAS  Google Scholar 

  • Lynch AM, Gibbs RS, Murphy JR et al (2011) Early elevations of the complement activation fragment C3a and adverse pregnancy outcomes. Obstet Gynecol 117:75–83

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald CR, Elphinstone RE, Kain KC (2013) The impact of placental malaria on neurodevelopment of exposed infants: a role for the complement system? Trends Parasitol 29:213–219

    Article  CAS  PubMed  Google Scholar 

  • McDonald CR, Cahill LS, Ho KT et al (2015) Experimental malaria in pregnancy induces neurocognitive injury in uninfected offspring via a C5a-C5a receptor dependent pathway. PLoS Pathog 11:e1005140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mens PF, Bojtor EC, Schallig HD (2010) Molecular interactions in the placenta during malaria infection. Eur J Obstet Gynecol Reprod Biol 152:126–132

    Article  CAS  PubMed  Google Scholar 

  • Mohlin FC, Mercier E, Fremeaux-Bacchi V et al (2013) Analysis of genes coding for CD46, CD55, and C4b-binding protein in patients with idiopathic, recurrent, spontaneous pregnancy loss. Eur J Immunol 43:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan TK (2016) Role of the placenta in preterm birth: a review. Am J Perinatol 33:258–266

    Article  PubMed  Google Scholar 

  • Muehlenbachs A, Fried M, Lachowitzer J et al (2007) Genome-wide expression analysis of placental malaria reveals features of lymphoid neogenesis during chronic infection. J Immunol 179:557–565

    Article  CAS  PubMed  Google Scholar 

  • Neres R, Marinho CR, Goncalves LA et al (2008) Pregnancy outcome and placenta pathology in plasmodium berghei ANKA infected mice reproduce the pathogenesis of severe malaria in pregnant women. PLoS One 3:e1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedroni SM, Gonzalez JM, Wade J et al (2014) Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth. Biochim Biophys Acta 1842:107–115

    Article  CAS  PubMed  Google Scholar 

  • Pyhala R, Hovi P, Lahti M et al (2014) Very low birth weight, infant growth, and autism-spectrum traits in adulthood. Pediatrics 134:1075–1083

    Article  PubMed  Google Scholar 

  • Regal JF, Gilbert JS, Burwick RM (2015) The complement system and adverse pregnancy outcomes. Mol Immunol 67:56–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richani K, Romero R, Soto E et al (2005a) Unexplained intrauterine fetal death is accompanied by activation of complement. J Perinat Med 33:296–305

    Article  CAS  PubMed  Google Scholar 

  • Richani K, Soto E, Romero R et al (2005b) Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med 17:239–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklin D, Lambris JD (2016) New milestones ahead in complement-targeted therapy. Semin Immunol 28:208–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogerson SJ, Pollina E, Getachew A et al (2003) Placental monocyte infiltrates in response to plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg 68:115–119

    Article  PubMed  Google Scholar 

  • Rogerson SJ, Hviid L, Duffy PE et al (2007) Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7:105–117

    Article  CAS  PubMed  Google Scholar 

  • Salmon JE, Heuser C, Triebwasser M et al (2011) Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med 8:e1001013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver KL, Zhong K, Leke RG et al (2010) Dysregulation of angiopoietins is associated with placental malaria and low birth weight. PLoS One 5:e9481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver KL, Conroy AL, Leke RG et al (2011) Circulating soluble endoglin levels in pregnant women in Cameroon and Malawi—associations with placental malaria and fetal growth restriction. PLoS One 6:e24985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Ahmed A, Girardi G (2011) Role of complement component C1q in the onset of preeclampsia in mice. Hypertension 58:716–724

    Article  CAS  PubMed  Google Scholar 

  • Soto E, Romero R, Richani K et al (2005) Anaphylatoxins in preterm and term labor. J Perinat Med 33:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto E, Romero R, Richani K et al (2009) Evidence for complement activation in the amniotic fluid of women with spontaneous preterm labor and intra-amniotic infection. J Matern Fetal Neonatal Med 22:983–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389

    Article  CAS  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Suguitan AL Jr, Leke RG, Fouda G et al (2003) Changes in the levels of chemokines and cytokines in the placentas of women with plasmodium falciparum malaria. J Infect Dis 188:1074–1082

    Article  CAS  PubMed  Google Scholar 

  • Tedesco F, Narchi G, Radillo O et al (1993) Susceptibility of human trophoblast to killing by human complement and the role of the complement regulatory proteins. J Immunol 151:1562–1570

    PubMed  CAS  Google Scholar 

  • Umbers AJ, Aitken EH, Rogerson SJ (2011) Malaria in pregnancy: small babies, big problem. Trends Parasitol 27:168–175

    Article  PubMed  Google Scholar 

  • Vaisbuch E, Romero R, Erez O et al (2010) Activation of the alternative pathway of complement is a feature of pre-term parturition but not of spontaneous labor at term. Am J Reprod Immunol 63:318–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerhuis R, Nielsen HM, Tenner AJ (2011) Complement in the brain. Mol Immunol 48:1592–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodruff TM, Ager RR, Tenner AJ et al (2010) The role of the complement system and the activation fragment C5a in the central nervous system. NeuroMolecular Med 12:179–192

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Mao D, Holers VM et al (2000) A critical role for murine complement regulator crry in fetomaternal tolerance. Science 287:498–501

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin C. Kain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weckman, A., Tran, V., Kain, K.C. (2018). Complement and Malaria in Pregnancy. In: Stoute, J. (eds) Complement Activation in Malaria Immunity and Pathogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-77258-5_5

Download citation

Publish with us

Policies and ethics