Green Space and Health

  • Payam DadvandEmail author
  • Mark Nieuwenhuijsen


Natural environments, including green spaces, have been associated with improved mental and physical health and wellbeing and are increasingly recognized as a mitigation measure to buffer the adverse health effects of urban living. This chapter provides an overview of (1) urban green spaces; (2) the methods that are applied to characterize exposure to these spaces; (3) the potential mechanisms through which green spaces could exert their health effects; (4) the health effects associated with contact to green spaces; and (5) the role of socioeconomic status (SES) in such effects. To date, a range of methods including questionnaires, field surveys, GPS, remote-sensing data, and land cover/land use maps have been applied to characterise use of green spaces, access to these spaces, their amount in vicinity of participants living and/or working environments, and their quality. The mechanism underlying health effects of green spaces are yet to be established but stress reduction/cognitive restoration, mitigation of the exposure to air pollution, noise, and heat, enhancing social cohesion/interactions, increasing physical activity, and enriching micro- and macro-biodiversity and environmental microbial input have been suggested to be involved. Exposure to green spaces has been associated with, among others, improved perceived general health, better pregnancy outcomes (e.g. birth weight), enhanced brain development in children, better cognitive function in adults, improved mental health, lower risk of a number of chronic diseases (e.g. diabetes and cardiovascular conditions), and reduced mortality. Given the many benefits of green space, health of urban residents who often have limited access to these spaces can be improved by increasing the amount of green space.


  1. Agay-Shay, K., Peled, A., Crespo, A. V., Peretz, C., Amitai, Y., Linn, S., et al. (2014). Green spaces and adverse pregnancy outcomes. Occupational and Environmental Medicine, 71(8), 562–569.CrossRefGoogle Scholar
  2. Akbari, H. (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environmental Pollution, 116, S119–S126.CrossRefGoogle Scholar
  3. Amoly, E., Dadvand, P., Forns, J., López-Vicente, M., Basagaña, X., Julvez, J., et al. (2014). Green and blue spaces and behavioral development in Barcelona schoolchildren: The BREATHE project. Environmental Health Perspectives, 122(12), 1351–1358.CrossRefGoogle Scholar
  4. Andrusaityte, S., Grazuleviciene, R., Kudzyte, J., Bernotiene, A., Dedele, A., & Nieuwenhuijsen, M. J. (2016). Associations between neighbourhood greenness and asthma in preschool children in Kaunas, Lithuania: A case–control study. BMJ Open, 6, e010341.CrossRefGoogle Scholar
  5. Baldauf, R., Jackson, L., Hagler, G., Vlad, I., McPherson, G., Nowak, D., et al. (2011). The role of vegetation in mitigating air quality impacts from traffic emissions. EM: Air and Waste Management Associations Magazine for Environmental Managers, 2011, 30–33.Google Scholar
  6. Bancroft, C., Joshi, S., Rundle, A., Hutson, M., Chong, C., Weiss, C. C., et al. (2015). Association of proximity and density of parks and objectively measured physical activity in the United States: A systematic review. Social Science & Medicine, 138, 22–30.CrossRefGoogle Scholar
  7. Bell, M. L., Belanger, K., Ebisu, K., Gent, J. F., Lee, H. J., Koutrakis, P., et al. (2010). Prenatal exposure to fine particulate matter and birth weight: Variations by particulate constituents and sources. Epidemiology, 21(6), 884–891.CrossRefGoogle Scholar
  8. Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486.CrossRefGoogle Scholar
  9. Berman, M. G., Jonides, J., & Kaplan, S. (2008). The cognitive benefits of interacting with nature. Psychological Science, 19(12), 1207–1212.CrossRefGoogle Scholar
  10. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kühnert, C., & West, G. B. (2007). Growth, innovation, scaling, and the pace of life in cities. PNAS, 104(17), 7301–7306.CrossRefGoogle Scholar
  11. Blair, A., Ritz, B., Wesseling, C., & Beane, F. L. (2015). Pesticides and human health. Occupational and Environmental Medicine, 72(2), 81–82.CrossRefGoogle Scholar
  12. Bolte, G., Tamburlini, G., & Kohlhuber, M. (2010). Environmental inequalities among children in Europe—Evaluation of scientific evidence and policy implications. European Journal of Public Health, 20(1), 14–20.CrossRefGoogle Scholar
  13. Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147–155.CrossRefGoogle Scholar
  14. Buccolieri, R., Gromke, C., Di Sabatino, S., & Ruck, B. (2009). Aerodynamic effects of trees on pollutant concentration in street canyons. Science of the Total Environment, 407(19), 5247–5256.CrossRefGoogle Scholar
  15. Cyril, S., Oldroyd, J. C., & Renzaho, A. (2013). Urbanisation, urbanicity, and health: A systematic review of the reliability and validity of urbanicity scales. BMC Public Health, 13, 513.CrossRefGoogle Scholar
  16. Dadvand, P., Bartoll, X., Basagaña, X., Dalmau-Bueno, A., Martinez, D., Ambros, A., et al. (2016). Green spaces and general health: Roles of mental health status, social support, and physical activity. Environment International, 91, 161–167.CrossRefGoogle Scholar
  17. Dadvand, P., de Nazelle, A., Figueras, F., Basagaña, X., Sue, J., Amoly, E., et al. (2012a). Green space, health inequality and pregnancy. Environment International, 40, 110–115.CrossRefGoogle Scholar
  18. Dadvand, P., de Nazelle, A., Triguero-Mas, M., Schembari, A., Cirach, M., Amoly, E., et al. (2012c). Surrounding greenness and exposure to air pollution during pregnancy: An analysis of personal monitoring data. Environmental Health Perspectives, 120(9), 1286–1290.CrossRefGoogle Scholar
  19. Dadvand, P., Nieuwenhuijsen, M. J., Esnaola, M., Forns, J., Basagaña, X., Alvarez-Pedrerol, M., et al. (2015a). Green spaces and cognitive development in primary schoolchildren. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 7937–7942.CrossRefGoogle Scholar
  20. Dadvand, P., Rivas, I., Basagaña, X., Alvarez-Pedrerol, M., Su, J., De Castro, P. M., et al. (2015b). The association between greenness and traffic-related air pollution at schools. Science of the Total Environment, 523, 59–63.CrossRefGoogle Scholar
  21. Dadvand, P., Sunyer, J., Basagaña, X., Ballester, F., Lertxundi, A., Fernández-Somoano, A., et al. (2012b). Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environmental Health Perspectives, 120(10), 1481–1487.CrossRefGoogle Scholar
  22. Dadvand, P., Villanueva, C. M., Font-Ribera, L., Martinez, D., Basagaña, X., Belmonte, J., et al. (2014). Risks and benefits of green spaces for children: A cross-sectional study of associations with sedentary behavior, obesity, asthma, and allergy. Environmental Health Perspectives, 122(12), 1329–1325.CrossRefGoogle Scholar
  23. Dalton, A. M., Jones, A. P., Sharp, S. J., Cooper, A. J. M., Griffin, S., & Wareham, N. J. (2016). Residential neighbourhood greenspace is associated with reduced risk of incident diabetes in older people: A prospective cohort study. BMC Public Health, 16, 1171.CrossRefGoogle Scholar
  24. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14691–14696.CrossRefGoogle Scholar
  25. de Keijzer, C., Gascon, M., Nieuwenhuijsen, M. J., & Dadvand, P. (2016). Long-term green space exposure and cognition across the life course: A systematic review. Current Environmental Health Reports, 3(4), 468–477.CrossRefGoogle Scholar
  26. De Ridder, K., Adamec, V., Bañuelos, A., Bruse, M., Bürger, M., Damsgaard, O., et al. (2004). An integrated methodology to assess the benefits of urban green space. Science of the Total Environment, 334–335, 489–497.CrossRefGoogle Scholar
  27. de Vries, S., van Dillen, S. M. E., Groenewegen, P. P., & Spreeuwenberg, P. (2013). Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. Social Science & Medicine, 94, 26–33.CrossRefGoogle Scholar
  28. De Vries, S., Verheij, R. A., Groenewegen, P. P., & Spreeuwenberg, P. (2003). Natural environments-healthy environments? An exploratory analysis of the relationship between greenspace and health. Environment & Planning A, 35(10), 1717–1732.CrossRefGoogle Scholar
  29. DellaValle, C. T., Triche, E. W., Leaderer, B. P., & Bell, M. L. (2012). Effects of ambient pollen concentrations on frequency and severity of asthma symptoms among asthmatic children. Epidemiology, 23(1), 55–63.CrossRefGoogle Scholar
  30. Dzhambov, A. M., Dimitrova, D. D., & Dimitrakova, E. D. (2014). Association between residential greenness and birth weight: Systematic review and meta-analysis. Urban Forestry & Urban Greening, 13(4), 621–629.CrossRefGoogle Scholar
  31. Fuertes, E., Markevych, I., Bowatte, G., Gruzieva, O., Gehring, U., Becker, A., et al. (2016). Residential greenness is differentially associated with childhood allergic rhinitis and aeroallergen sensitization in seven birth cohorts. Allergy, 71(10), 1461–1471. Scholar
  32. Fuller, R. A., & Gaston, K. J. (2009). The scaling of green space coverage in European cities. Biology Letters, 5(3), 52–355.CrossRefGoogle Scholar
  33. Gascon, M., Cirach, M., Martínez, D., Dadvand, P., Valent'in, A., Plasència, A., et al. (2016a). Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of Barcelona city. Urban Forestry & Urban Greening, 19, 88–94.CrossRefGoogle Scholar
  34. Gascon, M., Triguero-Mas, M., Martínez, D., Dadvand, P., Forns, J., Plasància, A., et al. (2015). Mental health benefits of long-term exposure to residential green and blue spaces: A systematic review. International Journal of Environmental Research and Public Health, 12(4), 4354–4379.CrossRefGoogle Scholar
  35. Gascon, M., Triguero-Mas, M., Martínez, D., Dadvand, P., Rojas-Rueda, D., Plasència, A., et al. (2016b). Residential green spaces and mortality: A systematic review. Environment International, 86, 60–67.CrossRefGoogle Scholar
  36. Gidlöf-Gunnarsson, A., & Öhrström, E. (2007). Noise and well-being in urban residential environments: The potential role of perceived availability to nearby green areas. Landscape and Urban Planning, 83(2), 115–126.CrossRefGoogle Scholar
  37. Givoni, B. (1991). Impact of planted areas on urban environmental quality: A review. Atmospheric Environment Part B Urban Atmosphere, 25(3), 289–299.CrossRefGoogle Scholar
  38. Grazuleviciene, R., Danileviciute, A., Dedele, A., Vencloviene, J., Andrusaityte, S., Uzdanaviciute, I., et al. (2015). Surrounding greenness, proximity to city parks and pregnancy outcomes in Kaunas cohort study. International Journal of Hygiene and Environmental Health, 218(3), 358–365.CrossRefGoogle Scholar
  39. Greenspace Scotland. (2008). Health impact assessment of greenspace a guide (Eilidh Johnston). Stirling: Greenspace Scotland.Google Scholar
  40. Hagler, G. S. W., Lin, M.-Y., Khlystov, A., Baldauf, R. W., Isakov, V., Faircloth, J., et al. (2012). Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Science of the Total Environment, 419, 7–15.CrossRefGoogle Scholar
  41. Hanski, I., von Hertzen, L., Fyhrquist, N., Koskinen, K., Torppa, K., Laatikainen, T., et al. (2012). Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 8334–8339.CrossRefGoogle Scholar
  42. Hind, S., Mieke, K., Lillian, T., & Michael, B. (2017). Asthma trajectories in a population-based birth cohort. Impacts of air pollution and greenness. American Journal of Respiratory and Critical Care Medicine, 195(5), 607–613.CrossRefGoogle Scholar
  43. Hoyle, C. R., Boy, M., Donahue, N. M., Fry, J. L., Glasius, M., Guenther, A., et al. (2011). A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 11(1), 321–343.CrossRefGoogle Scholar
  44. Hystad, P., Davies, H. W., Frank, L., Van Loon, J., Gehring, U., Tamburic, L., et al. (2014). Residential greenness and birth outcomes: Evaluating the influence of spatially correlated built-environment factors. Environmental Health Perspectives, 122(10), 1095–1102.CrossRefGoogle Scholar
  45. James, P., Hart, J. E., Banay, R. F., & Laden, F. (2016). Exposure to greenness and mortality in a nationwide prospective cohort study of women. Environmental Health Perspectives, 124(9), 1344–1352.CrossRefGoogle Scholar
  46. Kahn, P. H., & Kellert, S. R. (2002). Children and nature: Psychological, sociocultural, and evolutionary investigations. Cambridge: Massachusetts Institute of Technology.Google Scholar
  47. Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. New York: Cambridge University Press.Google Scholar
  48. Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. Journal of Environmental Psychology, 15(3), 169–182.CrossRefGoogle Scholar
  49. Kawachi, I., Subramanian, S. V., & Kim, D. (2008). Social capital and health. New York: Springer.CrossRefGoogle Scholar
  50. Kellert, S. R. (2005). Building for life: Designing and understanding the human-nature connection. Washington: Island Press.Google Scholar
  51. Kellert, S. R., & Wilson, E. O. (1993). The biophilia hypothesis. Washington: Island Press.Google Scholar
  52. Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33(1), 23–88.CrossRefGoogle Scholar
  53. Kuo, F. E., & Taylor, A. F. (2004). A potential natural treatment for attention-deficit/hyperactivity disorder: Evidence from a national study. American Journal of Public Health, 94(9), 1580–1586.CrossRefGoogle Scholar
  54. Lachowycz, K., & Jones, A. P. (2011). Greenspace and obesity: A systematic review of the evidence. Obesity Reviews, 12(5), e183–e189.CrossRefGoogle Scholar
  55. Laurent, O., Wu, J., Li, L., & Milesi, C. (2013). Green spaces and pregnancy outcomes in Southern California. Health & Place, 24, 190–195.CrossRefGoogle Scholar
  56. Lovasi, G. S., O'Neil-Dunne, J. P. M., Lu, J. W. T., Sheehan, D., Perzanowski, M. S., MacFaden, S. W., et al. (2013). Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a new York City birth cohort. Environmental Health Perspectives, 121(4), 494–500. Scholar
  57. Lovasi, G. S., Quinn, J. W., Neckerman, K. M., Perzanowski, M. S., & Rundle, A. (2008). Children living in areas with more street trees have lower prevalence of asthma. Journal of Epidemiology and Community Health, 62(7), 647–649.CrossRefGoogle Scholar
  58. Maas, J. (2008). Vitamin G: Green environments—Healthy environments. Utrecht: Nivel.Google Scholar
  59. Maas, J., Van Dillen, S. M. E., Verheij, R. A., & Groenewegen, P. P. (2009a). Social contacts as a possible mechanism behind the relation between green space and health. Health & Place, 15(2), 586–595.CrossRefGoogle Scholar
  60. Maas, J., Verheij, R. A., de Vries, S., Spreeuwenberg, P., Schellevis, F. G., & Groenewegen, P. P. (2009b). Morbidity is related to a green living environment. Journal of Epidemiology and Community Health, 63(12), 967–973.CrossRefGoogle Scholar
  61. Markevych, I., Thiering, E., Fuertes, E., Sugiri, D., Berdel, D., Koletzko, S., et al. (2014a). A cross-sectional analysis of the effects of residential greenness on blood pressure in 10-year old children: Results from the GINIplus and LISAplus studies. BMC Public Health, 14, 477.CrossRefGoogle Scholar
  62. Markevych, I., Tiesler, C. M. T., Fuertes, E., Romanos, M., Dadvand, P., Nieuwenhuijsen, M. J., et al. (2014b). Access to urban green spaces and behavioural problems in children: Results from the GINIplus and LISAplus studies. Environment International, 71, 29–35.CrossRefGoogle Scholar
  63. Marmot, M. (2010). Sustainable development: The key to tackling health inequalities. London: Sustainable Development Commission.Google Scholar
  64. Marmot, M., Allen, J., Bell, R., Bloomer, E., & Goldblatt, P. (2012). WHO European review of social determinants of health and the health divide. Lancet, 380(9846), 1011–1029.CrossRefGoogle Scholar
  65. Martinez, F. D. (2014). The human microbiome. Early life determinant of health outcomes. Annals of the American Thoracic Society, 11(Suppl 1), S7–S12.CrossRefGoogle Scholar
  66. McCormack, G. R., Rock, M., Toohey, A. M., & Hignell, D. (2010). Characteristics of urban parks associated with park use and physical activity: A review of qualitative research. Health & Place, 16(4), 712–726.CrossRefGoogle Scholar
  67. McGrath, L. J., Hopkins, W. G., & Hinckson, E. A. (2015). Associations of objectively measured built-environment attributes with youth moderate-vigorous physical activity: A systematic review and meta-analysis. Sports Medicine, 45(6), 841–865.CrossRefGoogle Scholar
  68. Mitchell, R., & Popham, F. (2008). Effect of exposure to natural environment on health inequalities: An observational population study. Lancet, 372(9650), 1655–1660.CrossRefGoogle Scholar
  69. Nichani, V., Dirks, K., Burns, B., Bird, A., Morton, S., & Grant, C. (2017). Green space and pregnancy outcomes: Evidence from growing up in New Zealand. Health & Place, 46, 21–28.CrossRefGoogle Scholar
  70. Nieuwenhuijsen, M. J., & Khreis, H. (2016). Car free cities: Pathway to healthy urban living. Environment International, 94, 251–262.CrossRefGoogle Scholar
  71. Nieuwenhuijsen, M. J., Khreis, H., Triguero-Mas, M., Gascon, M., & Dadvand, P. (2017). Fifty shades of green: Pathway to healthy urban living. Epidemiology, 28(1), 63–71.CrossRefGoogle Scholar
  72. Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4(3–4), 115–123.CrossRefGoogle Scholar
  73. Organisation for Economic Cooperation and Development (OECD). (2011). Perspectives on global development 2012: Social cohesion in a shifting world. Paris: OECD Publishing.Google Scholar
  74. Paoletti, E., Bardelli, T., Giovannini, G., & Pecchioli, L. (2011). Air quality impact of an urban park over time. Procedia Environmental Sciences, 4, 10–16.CrossRefGoogle Scholar
  75. Pilat, M. A., McFarland, A., Snelgrove, A., Collins, K., Waliczek, T. M., & Zajicek, J. (2012). The effect of tree cover and vegetation on incidence of childhood asthma in metropolitan statistical areas of Texas. HortTechnology, 22(5), 631–637.Google Scholar
  76. Rook, G. A. W. (2013). Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18360–18367.CrossRefGoogle Scholar
  77. Schwanen, T., Dijst, M., & Dieleman, F. M. (2002). A microlevel analysis of residential context and travel time. Environment & Planning A, 34(8), 1487–1508.CrossRefGoogle Scholar
  78. Su, J. G., Jerrett, M., de Nazelle, A., & Wolch, J. (2011). Does exposure to air pollution in urban parks have socioeconomic, racial or ethnic gradients? Environmental Research, 111(3), 319–328.CrossRefGoogle Scholar
  79. Sugiyama, T., Leslie, E., Giles-Corti, B., & Owen, N. (2008). Associations of neighbourhood greenness with physical and mental health: Do walking, social coherence and local social interaction explain the relationships? Journal of Epidemiology and Community Health, 62(5), e9.CrossRefGoogle Scholar
  80. Tallis, M., Taylor, G., Sinnett, D., & Freer-Smith, P. (2011). Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape and Urban Planning, 103(2), 129–138.CrossRefGoogle Scholar
  81. Taylor, A. F., & Kuo, F. E. (2009). Children with attention deficits concentrate better after walk in the park. Journal of Attention Disorders, 12(5), 402–409.CrossRefGoogle Scholar
  82. Taylor, A. F., Kuo, F. E., & Sullivan, W. C. (2001). Coping with ADD the surprising connection to green play settings. Environment and Behavior, 33(1), 54–77.CrossRefGoogle Scholar
  83. Taylor, B. T., Fernando, P., Bauman, A. E., Williamson, A., Craig, J. C., & Redman, S. (2011). Measuring the quality of public open space using Google earth. American Journal of Preventive Medicine, 40(2), 105–112.CrossRefGoogle Scholar
  84. Triguero-Mas, M., Dadvand, P., Cirach, M., Martínez, D., Medina, A., Mompart, A., et al. (2015). Natural outdoor environments and mental and physical health: Relationships and mechanisms. Environment International, 77, 35–41.CrossRefGoogle Scholar
  85. Ulrich, R. (1984). View through a window may influence recovery. Science, 224(4647), 224–225.CrossRefGoogle Scholar
  86. UN Department of Economic and Social Affairs. (2015). World urbanization prospects; the 2014 revision. New York: United Nations.Google Scholar
  87. US Environmental Protection Agency. 2017. Green streets and community open space. Retrieved Jul 30, 2017, from
  88. van den Berg, A. E., & van den Berg, C. G. (2011). A comparison of children with ADHD in a natural and built setting. Child: Care, Health and Development, 37(3), 430–439.Google Scholar
  89. van den Bosch, M., & Nieuwenhuijsen, M. (2017). No time to lose – Green the cities now. Environment International, 99, 343–350.CrossRefGoogle Scholar
  90. Van Dillen, S. M. E., de Vries, S., Groenewegen, P. P., & Spreeuwenberg, P. (2012). Greenspace in urban neighbourhoods and residents’ health: Adding quality to quantity. Journal of Epidemiology and Community Health, 66, e8.CrossRefGoogle Scholar
  91. Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12), 828–840.CrossRefGoogle Scholar
  92. Wells, N. M. (2000). At home with nature effects of greenness on children’s cognitive functioning. Environment and Behavior, 32(6), 775–795.CrossRefGoogle Scholar
  93. WHO Regional Office for Europe. 2016. Urban green spaces and health – A review of evidence. Retrieved Jul 31 2017, from
  94. Wilson, E. O. (1984). Biophilia. Cambridge: Harvard University Press.Google Scholar
  95. Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., et al. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ISGlobalBarcelonaSpain

Personalised recommendations