Skip to main content

Inorganic Nanomaterials for the Consolidation and Antifungal Protection of Stone Heritage

  • Chapter
  • First Online:
Advanced Materials for the Conservation of Stone

Abstract

The degradation of stone cultural heritage represents an irreversible loss of rich cultural heritage, and seeking ways to preserve it is urgent. Among different degradation processes, the loss of stone cohesion and biodeterioration are two of the most common issues that affect stone substrates. To solve this, the introduction of nanotechnology in the cultural heritage preservation field has represented a great revolution. The reason is that a particle size reduction of materials to the nanoscale highly increases their effectiveness as stone treatments. Thereby, different nanomaterials have been developed and applied as consolidating products and protective coatings in stone artworks. Due to the increased compatibility of inorganic nanoparticles (NPs) with a large part of the built and sculptural heritage, this chapter accentuates the use of inorganic NPs for the consolidation and antifungal protection of stone heritage. Special focus is given to the factors that can influence the success of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruedrich J. Physical weathering of building stones induced by freeze-thaw action: a laboratory long-term study. Environ Earth Sci. 2011;63:1573–86.

    Article  Google Scholar 

  2. Ákos T, Licha T, Simon K. Urban and rural limestone weathering; the contribution of dust to black crust formation. Environ Earth Sci. 2011;63:675–93.

    Article  Google Scholar 

  3. Steiger M, Charola AE, Sterflinger K. Weathering and deterioration. In: Siegesmund S, Snethlage R, editors. Stone in architecture: properties, durability. Heidelberg: Springer; 2011. p. 227–316.

    Chapter  Google Scholar 

  4. Cardell C, Delalieux F, Roumpopoulos A, Moropoulou A, Auger F, Van Grieken R. Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Const Build Mater. 2003;17:165–79.

    Article  Google Scholar 

  5. Scheerer S, Ortega-Morales O, Gaylarde C. Microbial deterioration of stone monuments-an updated overview. Adv Appl Microbiol. 2009;66:97–139.

    Article  Google Scholar 

  6. Jain A, Bhadauria S, Kumar V, Chauhan RS. Biodeterioration of sandstone under the influence of different humidity levels in laboratory conditions. Build Environ. 2009;44:1276–84.

    Article  Google Scholar 

  7. Campagna BA, Kumar R, Kumar AV. Biodeterioration of stone in tropical environments: an overview. Madison: The J. Paul Getty Trust; 2000.

    Google Scholar 

  8. Doehne E, Price CA. Stone conservation. An overview of current research. 2nd ed. Los Angeles: Getty Publications; 2010.

    Google Scholar 

  9. Delgado Rodrigues J. Consolidation of decayed stones. A delicate problem with few practical solutions. Proc Int Semin Hist Constr. 2001:3–14.

    Google Scholar 

  10. Dornieden T, Gorbushina AA, Krumbein WE. Biodecay of cultural heritage as a space/time-related ecological situation-An evaluation of a series of studies. Int Biodeterior Biodegr. 2000;46:261–70.

    Article  Google Scholar 

  11. Sterflinger K. Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev. 2010;24:47–55.

    Article  Google Scholar 

  12. Murty BS, Shankar P, Raj B, Rath BB, Murday J. Unique properties of nanomaterials. In: Murty BS, Shankar P, Raj B, Rath BB, Murday J, editors. Textbook of nanoscience and nanotechnology. Heidelberg: Springer; 2013. p. 29–65.

    Chapter  Google Scholar 

  13. Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys. 2013;47:1–25.

    Google Scholar 

  14. Savage T, Rao AM. Thermal properties of nanomaterials and nanocomposites. In: Tritt TM, editor. Thermal conductivity. Physics of solids and liquids. Boston: Springer; 2004. p. 261–84.

    Google Scholar 

  15. La Russa MF, Macchia A, Ruffolo SA, De Leo F, Barberio M, Barone P, Crisci GM, Urzi C. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int Biodeterior Biodegrad. 2014;96:87–96.

    Article  Google Scholar 

  16. Munafò P, Battista G, Quaglirini E. TiO2-based nanocoatings for preserving architectural stone surfaces: an overview. Const Build Mater. 2015;84:201–18.

    Article  Google Scholar 

  17. Colangiuli D, Calia A, Bianco N. Novel multifunctional coatings with multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage. Const Build Mater. 2015;93:189–96.

    Article  Google Scholar 

  18. Natali I, Tomasin P, Becherini F, Bernardi A, Ciantelli C, Favaro M, Favoni O, Forrat Pérez VJ, Olteanu ID, Romero Sanchez MD, Vivarelli A, Bonazza A. Innovative consolidating products for stone materials: field exposure tests as a valid approach for assessing durability. Heritage Sci. 2015;3:6.

    Article  Google Scholar 

  19. Graziani G, Sassoni E, Franzoni E. Consolidation of porous carbonate stones by an innovative phosphate treatment: mechanical strengthening and physical-microstructural compatibility in comparison with TEOS-based treatments. Heritage Sci. 2015;3:1.

    Article  Google Scholar 

  20. Sierra-Fernandez A, Gomez-Villalba LS, Rabanal ME, Fort R. New nanomaterials for applications in conservation and restoration of stony materials: a review. Mater Constr. 2017;67:107.

    Article  Google Scholar 

  21. Buzea C, Pacheco I. Nanomaterials and their classification. In: Kumar Shukla A, editor. EMR/ESR/EPR spectroscopy for characterization of nanomaterials. India: Springer; 2017. p. 3–45.

    Chapter  Google Scholar 

  22. Daraio C, Jin S. Synthesis and patterning methods for nanostructures useful for biological applications. In: Silva G, Parpura V, editors. Nanotechnology for biology and medicine. Fundamental biomedical technologies. New York: Springer; 2012. p. 27–44.

    Chapter  Google Scholar 

  23. Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P. Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interface Sci. 2013;392:42–9.

    Article  Google Scholar 

  24. Öner D, McCarthy TJ. Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir. 2000;20:7777–82.

    Article  Google Scholar 

  25. Fan M, Andrade GFS, Brolo AG. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta. 2011;693:7–25.

    Article  Google Scholar 

  26. Ali G, Kim HJ, Kum JM, Cho SO. Rapid synthesis of TiO2 nanoparticles by electrochemical anodization of a Ti wire. Nanotechnology. 2013;24:185601.

    Article  Google Scholar 

  27. Giorgi R, Dei L, Ceccato M, Schettino C, Baglioni P. Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification. Langmuir. 2002;18:8198–203.

    Article  Google Scholar 

  28. Poggi G, Toccafondi N, Melita LN, Knowles JC, Bozec L, Giorgi R, Baglioni P. Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Appl Phys A Mater Sci Process. 2014;114:685–93.

    Article  Google Scholar 

  29. Sierra-Fernandez A, Gomez-Villalba LS, Milosevic O, Fort R, Rabanal ME. Synthesis and morphostructural characterization of nanostructured magnesium hydroxide nanostructured magnesium hydroxide obtained by a hydrothermal method. Ceram Int. 2014;40:12285–92.

    Article  Google Scholar 

  30. Gómez-Ortiz N, De la Rosa-García S, González-Gómez W, Soria-Castro M, Quintana P, Oskam G, Ortega-Morales B. Antifungal coatings based on Ca(OH)2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments. ACS Appl Mater Interfaces. 2013;5:1556–65.

    Article  Google Scholar 

  31. Sierra-Fernandez A, De la Rosa-García S, Gomez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P. Synthesis, photocatalytic and antifungal properties of MgO, ZnO and Zn/Mg Oxide Nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces. 2017;9:24873–86.

    Article  Google Scholar 

  32. Taglieri G, Daniele V, Del Re G, Volpe R. A new and original method to produce Ca(OH)2 nanoparticles by using and anion exchange resin. Adv Nanopart. 2015;4:17–24.

    Article  Google Scholar 

  33. Cueto M, Sanz M, Ouija M, Gámez F, Martínez-Haya B, Castillejo M. Platinum nanoparticles prepared by laser ablation in aqueous solutions: fabrication and application to laser desorption ionization. J Phys Chem C. 2011;45:22217–24.

    Article  Google Scholar 

  34. Saoud KM, Ibala I, El Ladki D, Ezzeldeen O, Saeed S. Microwave assisted preparation of calcium hydroxide and barium hydroxide nanoparticles and their application for conservation of cultural heritage. In: Ionnides M, Magnetat-Thalmann N, Fink E, Zarnic R, Yen AY, Quak E, editors. Digital heritage. Progress in cultural heritage: documentation, preservation, and protection. Switzerland: Springer; 2014. p. 342–52.

    Google Scholar 

  35. Flores G, Carrillo J, Luna JA, Martínez R, Sierra-Fernandez A, Milosevic O, Rabanal ME. Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP. Adv Powder Tecnol. 2014;25:1435–41.

    Article  Google Scholar 

  36. Gregorczyk K, Knez M. Hybrid nanomaterials through molecular and atomic layer deposition: top down, bottom up, and in-between approaches to new materials. Prog Mater Sci. 2016;75:1–37.

    Article  Google Scholar 

  37. Marquardt AE, Breitung EM, Drayman-Weisser T, Gates G, Phaneuf RJ. Protecting silver cultural heritage objects with atomic layer deposited corrosion barriers. Heritage Sci. 2015;3:37.

    Article  Google Scholar 

  38. Taglieri G, Mondelli C, Daniele V, Pusceddu E, Trapananti A. Synthesis and X-ray diffraction analyses of calcium hydroxide nanoparticles in aqueous suspension. Adv Mater Phys Chem. 2013;3:108–12.

    Article  Google Scholar 

  39. Rodriguez-Navarro C, Suzuki A, Ruiz-Agudo E. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. Langmuir. 2013;29:11457–70.

    Article  Google Scholar 

  40. Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. Crystallogr Rev. 2017;23:160–226.

    Article  Google Scholar 

  41. Gomez-Villalba LS, López-Arce P, Alvarez de Buergo M, Fort R. Structural stability of a coloidal solution of Ca(OH)2 nanocrystals exposed to high relative humidity conditions. Appl Phys A Mater Sci Process. 2011;104:1249–54.

    Article  Google Scholar 

  42. Ciliberto E, Condorelli GG, La Delfa S, Viscuso E. Nanoparticles of Sr(OH)2: synthesis in homogeneous phase at low temperature and application for cultural heritage artifacts. Appl Phys A Mater Sci Process. 2008;92:37–141.

    Article  Google Scholar 

  43. Taglieri V, Daniele V, Macera L, Mondelli C. Nano Ca(OH)2 synthesis using a cost-effective and innovative method: reactivity study. J Am Ceram Soc. 2017;100(12):5766–78.

    Article  Google Scholar 

  44. Rodriguez-Navarro C, Ruiz-Agudo E, Ortega Huertas M, Hansen E. Nanostructure and irreversible behavior of Ca(OH)2: implications in cultural heritage conservation. Langmuir. 2005;24:10948–57.

    Article  Google Scholar 

  45. Kumar SSR. Transmission electron microscopy characterization of nanomaterials. Berlin: Springer; 2014.

    Book  Google Scholar 

  46. Ditaranto N, Van der Werf ID, Picca RA, Sportelli MC, Giannossa LC, Bonerba E, Tantillo G, Sabbatini L. Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stonework. New J Chem. 2015;39:6836–43.

    Article  Google Scholar 

  47. Licchelli M, Malagoudi M, Weththimuni M, Zanchi C. Nanoparticles for conservation of bio-calcarenite stone. Appl Phys A Mater Sci Process. 2014;114:673–83.

    Article  Google Scholar 

  48. De Ferri L, Lottici PP, Lorenzi A, Montenero A, Salvioli-Mariani E. Study of silica nanoparticles-polysiloxane hydrophobic treatments for Stone-based monument protection. J Cult Herit. 2011;12:356–63.

    Article  Google Scholar 

  49. Willian DB, Carter CB. The transmission electron microscope. In: Willian DB, Carter CB, editors. Transmission electron microscopy. New York: Springer; 2009. p. 3–22.

    Chapter  Google Scholar 

  50. Gomez-Villalba LS, Sierra-Fernandez A, Rabanal ME, Fort R. TEM-HRTEM study on the dehydration process of nanostructured Mg-Ca hydroxide into Mg-Ca oxide. Ceram Int. 2016;42:9455–66.

    Article  Google Scholar 

  51. Bellot-Gurlet L, Dillmann P, Neff D. From archaeological sites to nanoscale: the quest of tailored analytical strategy and modelling. In: Dillmann P, Bellot-Gurlet L, Nenner I, editors. Nanoscience and cultural heritage. Paris: Atlantis Press; 2016. p. 205–30.

    Google Scholar 

  52. Manoudis P, Papadopoulou S, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Panayiotou C. Polymer-Silica nanoparticles composite film as protective coatings for stone-based monuments. J Phys Conf Ser. 2007;61:1361.

    Article  Google Scholar 

  53. Rodriguez-Navarro C, Jroundi F, Schiro M, Ruiz-Agudo E, González-Muñoz MT. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. Appl Environ Microbiol. 2012;78:4017–29.

    Article  Google Scholar 

  54. Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32:711–26.

    Article  Google Scholar 

  55. Xiao Y, Gao F, Fang Y, Tan Y. Dispersions of surface modified calcium hydroxide nanoparticles with enhanced kinetic stability: properties and applications to desalination and consolidation of the Yungang Grottoes. Mater Res Soc Symp Proc. 2015;1656.

    Google Scholar 

  56. Giorgi R, Baglioni M, Berti D, Baglioni P. New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Acc Chem Res. 2010;43:695–704.

    Article  Google Scholar 

  57. Giorgi R, Ambrosi M, Toccafondi N, Baglioni P. Nanoparticles for cultural heritage conservation: calcium and barium hydroxide nanoparticles for wall painting consolidation. Chem Eur J. 2010;16:9374–82.

    Article  Google Scholar 

  58. Ziegenbald G. Colloidal calcium hydroxide: a new material for consolidation and conservation of carbonate stone. In: 11th International Congress on Deterioration and Conservation of Stone III. 2008. p. 1119.

    Google Scholar 

  59. López-Arce P, Gomez-Villalba LS, Pinho L, Fernández Valle ME, Álvarez de Buergo M, Fort R. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques. Mater Char. 2010;61:168–84.

    Article  Google Scholar 

  60. López-Arce P, Gomez-Villalba LS, Martinez-Ramírez S, Álvarez de Buergo M, Fort R. Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs. Powder Technol. 2011;205:263–9.

    Article  Google Scholar 

  61. Rodríguez-Navarro C, Elert K, Sevcik R. Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation. Cryst Eng Comm. 2016;35:6594–607.

    Article  Google Scholar 

  62. Gomez-Villalba LS, López-Arce P, Fort R. Nucleation of CaCO3 polymorphs from a coloidal alcoholic solution of Ca(OH)2 nanocrystals exposed to low humidity conditions. Appl Phys A Mater Sci Process. 2012;106:213–7.

    Article  Google Scholar 

  63. Baglioni P, Chelazzi D, Giorgi R. Nanotechnologies in the conservation of cultural heritage: a compendium of materials and techniques. Dordrecht: Springer; 2014.

    Google Scholar 

  64. Gomez-Villalba LS, López-Arce P, Álvarez de Buergo M, Fort R. Atomic defects and their relationship to aragonite-calcite transformation in portlandite nanocrystal carbonation. Cryst Growth Des. 2012;12:4844–52.

    Article  Google Scholar 

  65. Gomez-Villalba LS, López-Arce P, Álvarez de Buergo M, Zornoza-Indart A, Fort R. Mineralogical and textural considerations in the assessment of aesthetic changes in dolostones by effect of treatments with Ca(OH)2 nanoparticles. In: Rogerio-Candelera MA, Lazzari M, Cano E, editors. Science and technology for the conservation of cultural heritage. London: CRC Press; 2013. p. 235–329.

    Chapter  Google Scholar 

  66. Gomez-Villalba LS, López-Arce P, Zornoza-Indart A, Álvarez de Buergo M, Fort R. Evaluation of a consolidation treatment in dolostones by mean of calcium hydroxide nanoparticles in high relative humidity conditions. Bol Soc Esp Ceram V. 2011;50:85–92.

    Article  Google Scholar 

  67. Borsoi G, Lubelli B, Van Hees R, Veiga R, Santos Silva A. Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Constr Build Mater. 2017;142:385–94.

    Article  Google Scholar 

  68. Borsoi G, Lubelli B, Van Hees RPJ, Tomasin P. Effect of solvent on nanolime transport within limestone: how to improve in-depth deposition. Colloids Surf A Physicochem Eng Asp. 2016;497:171–81.

    Article  Google Scholar 

  69. López-Arce P, Zornoza-Indart A. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation. Apply Phys A. 2015;120:1475–95.

    Article  Google Scholar 

  70. Rodriguez-Navarro C, Vettori I, Ruiz-Agudo E. Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: implication in heritage conservation using nanolimes. Langmuir. 2013;32:5183–94.

    Article  Google Scholar 

  71. Warscheid T, Braams J. Biodeterioration of stone: a review. Int Biodeter Biodegr. 2000;46:343–68.

    Article  Google Scholar 

  72. Gadd GM. Geomicology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res. 2007;11:3–49.

    Article  Google Scholar 

  73. Perry IVTD, McNamara CJ, Mitchell R. Biodeterioration of stone. In: Sackler NAS Colloquium. Scientific examination of art: modern techniques in conservation and analysis. Washington, DC: National Academy of Sciences; 2005. p. 72–84.

    Google Scholar 

  74. May-Crespo J, Ortega-Morales BO, Camacho-Chab JC, Quintana P, Alvarado-Gil JJ, Gonzalez-García G, Reyes-Estebanez M, Chan-Bacab MJ. Photoacoustic monitoring of water transport process in calcareous stone coated with biopolymers. Appl Phys A Mater Sci Process. 2016;122:1060–70.

    Article  Google Scholar 

  75. Gorbushina AA. Life on the rocks. Environ Microbiol. 2007;9:1613–31.

    Article  Google Scholar 

  76. Cámara B, De los Ríos A, García del Cura MA, Galván A, Ascaso C. Dolostone bioreceptivity to fungal colonization. Mater Constr. 2008;58:113–24.

    Article  Google Scholar 

  77. Hirsch P, Eckhardt FEW, Palmer RJ Jr. Fungi active in weathering of rock and stone monuments. Can J Bot. 1995;73:1384–90.

    Article  Google Scholar 

  78. Gorbushina AA, Krumbein WE, Hamann CH, Panina L, Soukharjevski S. Role of black fungi in color change and biodeterioration of antique marbles. Geomicrobiol J. 1993;11:205–21.

    Article  Google Scholar 

  79. Gadd GM. Geomicrobiology of the built environment. Nat Microbiol. 2017;2:16275.

    Article  Google Scholar 

  80. Sterflinger K, Krumbein WE. Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J. 1997;14:219–30.

    Article  Google Scholar 

  81. Fomina M, Burford EP, Hillier S, Kierans M, Gadd G. Rock-building fungi. Geomicrobiol J. 2010;27:624–9.

    Article  Google Scholar 

  82. Urzi C, García-Valles MT, Vendrell M, Pernice A. Biomineralization processes of the rock surfaces in field and in laboratory. Geomicrobiol J. 1999;16:39–54.

    Article  Google Scholar 

  83. Bellissima F, Bonini M, Giorgi R, Baglioni P, Barresi P, Mastromei G, Perito B. Antibacterial activity of silver nanoparticles grafted on stone surface. Environ Sci Pollut R. 2014;21:13278–86.

    Article  Google Scholar 

  84. Essa AM, Khallaf MK. Biological nanosilver particles for the protection of archaeological stones against microbial colonization. Int Biodeterior Biodegr. 2014;94:31–7.

    Article  Google Scholar 

  85. Ditaranto N, Loperfido S, Van der Werf I, Mangone A, Cioffi N, Sabbatini L. Synthesis and analytical characterisation of copper-based nanocoatings for bioactive stone artworks treatment. Anal Bioanal Chem. 2011;399:473–81.

    Article  Google Scholar 

  86. Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM. ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A: Mater. 2010;100:829–34.

    Article  Google Scholar 

  87. Gambino M, Ahmed MAAA, Villa F, Cappitelli F. Zinc oxide nanoparticles hinder fungal biofilm development in an ancient Egyptian tomb. Int Biodeterior Biodegr. 2017;122:92–9.

    Article  Google Scholar 

  88. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Rev Microbiol. 2013;11:371–84.

    Article  Google Scholar 

  89. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–49.

    Article  Google Scholar 

  90. Savi GD, Bortoluzzi AJ, Scussel VM. Antifungal properties of zinc-compounds against toxigenic fungi and mycotoxin. Int J Food Sci Technol. 2013;48:1834–40.

    Article  Google Scholar 

  91. Vatansever F, De Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy and beyond. FEMS Microbial Rev. 2013;37:955–89.

    Article  Google Scholar 

  92. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 2013;2013:942916.

    Article  Google Scholar 

  93. Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. 2017;49:137–52.

    Article  Google Scholar 

  94. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inor Mater. 2001;3:643–6.

    Article  Google Scholar 

  95. Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin. 2004;25:932–6.

    Google Scholar 

  96. Kumar S, Singh M, Halder D, Mitra A. Mechanistic study of antibacterial activity of biologically synthesized silver nanocolloids. Colloids Surf A Physicochem Eng Asp. 2014;449:82–6.

    Article  Google Scholar 

  97. Ivask A, Voelcker NH, Seabrook SA, Hor M, Kirby JK, Fenech M, Davis TP, Ke PC. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem Res Toxicol. 2015;28:1023–35.

    Article  Google Scholar 

  98. Bonetta S, Bonetta S, Motta F, Strini A, Carraro E. Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express. 2013;3:59.

    Article  Google Scholar 

  99. Viswanath B, Patra S, Munichandraiah N, Ravishankar N. Nanoporous Pt with high surface area by reaction-limited aggregation of nanoparticles. Langmuir. 2009;25:3115–21.

    Article  Google Scholar 

  100. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013;3:4467–79.

    Google Scholar 

  101. Noeiaghaei T, Dhami N, Mukherjee A. Nanoparticles surface treatments on cemented materials for inhibition of bacterial growth. Constr Build Mater. 2017;150:880–91.

    Article  Google Scholar 

  102. Chitra K, Annadurai G. Antibacterial activity of Ph-dependent biosynthesized silver nanoparticles against clinical pathogen. Biomed Res Int. 2014;2014:725165.

    Article  Google Scholar 

  103. Lin JQ, Zhang HW, Chen Z, Zheng YG. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4(9):5421.

    Article  Google Scholar 

  104. Lakshmi Prassana V, Vijayaraghavan R. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir. 2015;31:9155–62.

    Article  Google Scholar 

  105. Stankic S, Suman S, Haque F, Vidic J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol. 2016;14:73.

    Article  Google Scholar 

  106. Pinna D, Salvadori B, Galeotti M. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci Total Environ. 2012;423:132–41.

    Article  Google Scholar 

  107. Aflori M, Simionescu B, Bordiani I, Olaru M. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones. Mat Si Eng B. 2013;178:1339–46.

    Article  Google Scholar 

  108. La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM. Multifunctional TiO2 coatings for cultural heritage. Prog Org Sci. 2012;74:186–91.

    Article  Google Scholar 

  109. Jurado V, Fernandez-Cortes A, Cuezva S, Laiz L, Cañaveras JC, Sanchez-Moral S, Saiz-Jimenez C. The fungal colonisation of rock-art caves: experimental evidence. Naturwissenschaften. 2009;96:1027–34.

    Article  Google Scholar 

  110. De Los Ríos A, Pérez-Ortega S, Wierzchos J, Ascaso C. Differential effects of biocide treatments on saxicolous communities: case study of the Segovia cathedral cloister (Spain). Int Biodeterior Biodegr. 2012;67:64–72.

    Article  Google Scholar 

  111. Mihajlovsji A, Seyer D, Benamara H, Bousta F, Di Martino P. An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann Microbiol. 2015;65:1243–55.

    Article  Google Scholar 

  112. De Los Ríos A, Wierzchos J, Sancho LG, Green TGA, Ascaso C. Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist. 2005;37:383–95.

    Article  Google Scholar 

  113. De los Ríos A, Pérez-Ortega S, Wierzchos J, Ascaso C. Differential effects of biocide treatments on saxicolous communities: case study of the Segovia cathedral cloister (Spain). Int Biodeter Biodegr. 2012;67:64–72.

    Article  Google Scholar 

  114. De los Ríos A, Ascaso C. Contributions of in situ microscopy to current understanding of stone biodeterioration processes. Int Microbiol. 2005;8:181–8.

    Google Scholar 

  115. Schlafer S, Meyer RL. Confocal microscopy imaging of the biofilms matrix. J Microbiol Methods. 2017;138:50–9.

    Article  Google Scholar 

  116. Ascaso C, Wierzchos J, Souza-Egipsy V, de los Ríos A, Delgado Rodrigues J. In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int Biodeterior Biodegr. 2002;49:1–12.

    Article  Google Scholar 

  117. Saiz-Jimenez C. Biodeterioration: an overview of the state of the art and assessment of future directions. 2003. Available from: http://webcache.googleusercontent.com/search?q=cache:jxplYfxPpSMJ:www.arcchip.cz/w08/w08_saiz_jimenez.pdf+%22biodeterioration%22,+%22stone%22,+%22mechanism%22&hl=pl&ie=UTF-8.

  118. Portillo MC, Saiz-Jimenez C, Gonzalez JM. Molecular characterization of total and metabolically active bacterial communities of “white colonizations” in the Altamira Cave, Spain. Res Microbiol. 2009;160:41–7.

    Article  Google Scholar 

  119. Sterflinger K, Piñar G. Microbial deterioration of cultural heritage and works of art-tilting at windmills? Appl Microbiol Biotechnol. 2013;97:9637–46.

    Article  Google Scholar 

  120. Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl Environ Microbiol. 2011;77:1153–61.

    Article  Google Scholar 

Download references

Acknowledgment

These studies were supported by the Community of Madrid under the Geomaterials 2 Programme (S2013/MIT-2914) and Multimat-Challenge (S2013/MIT-2862), the Innovation and Education Ministry (Climortec, BIA2014-53911-R, MAT2016-80875-C3-3-R, and MAT2013-47460-C5-5-P), and the FOMIX-Yuc 2008-108160, CONACYT LAB-2009-01-123913, 188345, and Fronteras de la Ciencia No. 138. A.S-F would like to gratefully acknowledge the financial support of Santander Universidades through “Becas Iberoamérica Jóvenes Profesores e Investigadores, España 2015” Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Sierra-Fernandez or R. Fort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sierra-Fernandez, A. et al. (2018). Inorganic Nanomaterials for the Consolidation and Antifungal Protection of Stone Heritage. In: Hosseini, M., Karapanagiotis, I. (eds) Advanced Materials for the Conservation of Stone. Springer, Cham. https://doi.org/10.1007/978-3-319-72260-3_6

Download citation

Publish with us

Policies and ethics