Skip to main content

Advertisement

Log in

Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Alkaline earth metal hydroxide nanoparticles dispersions have demonstrated to be efficient for the preservation of cellulose-based artifacts, providing a stable neutral environment and, if in excess, turning into mild alkaline species. New formulations tailored for specific conservation issues have been recently obtained via a solvothermal reaction, starting from bulk metal, and short chain alcohols. Using this synthetic procedure, stable, and high concentrated calcium hydroxide nanoparticles dispersions can be obtained. The characterization of nanoparticles was carried out by dynamic light scattering, transmission electron microscopy and X-ray powder diffraction and showed that the dispersed systems are particularly suitable for the application on porous substrates. In a direct application of this technology, acidic paper and canvas samples were artificially aged after deacidification using calcium hydroxide nanoparticles dispersed in short chain alcohols. Cellulose viscosimetric polymerization degree (DPv), cellulose pyrolysis temperature, and samples’ pH were evaluated upon the aging and in terms of protective action arising from the applied treatment. In particular, determinations of DPv clearly showed that the degradation of acidic paper and canvas samples proceeds at higher rates with respect to deacidified samples. These evidences were also confirmed by the thermogravimetric analysis of samples, in which the benefits due to the deacidification treatments are measured in terms of pyrolysis temperature of cellulose. These new formulations of nanoparticles dispersions expand the palette of available tools for the conservation of cellulose-based works of art, such as easel paintings, and manuscripts, potentially opening the way for the intervention on parchment and leather, whose preservation is a particularly challenging task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Fengel, G. Wegener, Wood: chemistry, ultrastructure, reactions (Walter De Gruyter, Berlin and New York, 1984), p. 613

    Google Scholar 

  2. J.F. Harris, Appl. Polym. Symp. 28, 131 (1975)

    Google Scholar 

  3. N.S. Banait, W.P. Jencks, J. Am. Chem. Soc. 113, 7951 (1991)

    Article  Google Scholar 

  4. Y. Zhang, J. Bommuswamy, M.L. Sinnott, J. Am. Chem. Soc. 116, 7557 (1994)

    Article  Google Scholar 

  5. L.E. Lundgaard, W. Hansen, D. Linhjell, T.J. Painter, IEEE Trans. Power Deliv. 19, 230 (2004)

    Article  Google Scholar 

  6. R.S. Orr, L.C. Weiss, G.C. Humphreys, T. Mares, J.N. Grant, Text. Res. J. 24, 399 (1954)

    Article  Google Scholar 

  7. T. Iversen, Oxidative decomposition of the plysaccharide components of the paper, in ageing/degradation of paper. A literature survey (Stockholm, Sweden, 1989), pp. 43–47

  8. C.J. Shanani, G. Harrison, in Works of art on paper: books, documents and photographs, edited by V. Daniels, A. Donnithorne, P. Smith (International Institute for Conservation of Historic and Artistic Works, London, 2002), pp. 189–192

  9. A.M. Emsley, R.J. Heywood, M. Ali, C.M. Eley, Cellulose 4, 1 (1997)

    Article  Google Scholar 

  10. S. Zervos, A. Moropoulou, Cellulose 12, 485 (2005)

    Article  Google Scholar 

  11. P. Calvini, A. Gorassini, A.L. Merlani, Restaurator 28, 47 (2007)

    Article  Google Scholar 

  12. H.-Z. Ding, Z.D. Wang, Cellulose 15, 205 (2008)

    Article  MathSciNet  Google Scholar 

  13. M.H. Gehlen, Cellulose 17, 245 (2010)

    Article  Google Scholar 

  14. P. Calvini, A. Gorassini, A.L. Merlani, Cellulose 15, 193 (2008)

    Article  Google Scholar 

  15. J. Wouters, Science 322, 1196 (2008)

    Article  Google Scholar 

  16. J.G. Neevel, C.T.J. Mensch, T.J. Cornelis, in ICOM Committee for Conservation Triennial Meeting, ed. by J. Bridgland (James and James, London, 1999), pp. 528–533

  17. U. Henniges, R. Reibke, G. Banik, E. Huhsmann, U. Hähner, T. Prohaska, A. Potthast, Cellulose 15, 861 (2008)

    Article  Google Scholar 

  18. D. Hunter, Papermaking through Eighteen Centuries (W.E. Rudge, New York, 1930), p. 406

    Google Scholar 

  19. J. Tétreault, Airborne pollutants in museums, galleries and archives: risk assessment, control strategies and preservation management (Canadian Conservation Institute, Ottawa, 2003), p. 168

    Google Scholar 

  20. T. Grøntoft, M. Odlyha, P. Mottner, E. Dahlin, S. Lopez-Aparicio, S. Jakiela, M. Scharff, G. Andrade, M. Obarzanowski, M. Ryhl-Svendsen, D. Thickett, S. Hackney, J. Wadum, J. Cult. Herit. 11, 411 (2010)

    Article  Google Scholar 

  21. E. Carretti, M. Bonini, L. Dei, B.H. Berrie, L.V. Angelova, P. Baglioni, R.G. Weiss, Acc. Chem. Res. 43, 751 (2010)

    Article  Google Scholar 

  22. R. Giorgi, M. Baglioni, D. Berti, P. Baglioni, Acc. Chem. Res. 43, 695 (2010)

    Article  Google Scholar 

  23. P. Baglioni, D. Chelazzi, R. Giorgi, G. Poggi, in Encyclopedia of surface and colloid science, ed. by P. Somasundaran, 2nd edn. (Taylor & Francis, New York, 2012), pp. 1–16

  24. D. Chelazzi, G. Poggi, Y. Jaidar, N. Toccafondi, R. Giorgi, P. Baglioni, J. Colloid Interface Sci. 392, 42 (2013)

    Article  Google Scholar 

  25. R. Giorgi, L. Dei, M. Ceccato, C. Schettino, P. Baglioni, Langmuir 18, 8198 (2002)

    Article  Google Scholar 

  26. R. Giorgi, C. Bozzi, L. Dei, C. Gabbiani, B.W. Ninham, P. Baglioni, Langmuir 21, 8495 (2005)

    Article  Google Scholar 

  27. G. Poggi, R. Giorgi, N. Toccafondi, V. Katzur, P. Baglioni, Langmuir 26, 19084 (2010)

    Article  Google Scholar 

  28. G. Poggi, P. Baglioni, R. Giorgi, Restaurator 32, 247 (2011)

    Article  Google Scholar 

  29. R. Giorgi, D. Chelazzi, P. Baglioni, Langmuir 21, 10743 (2005)

    Article  Google Scholar 

  30. R. Giorgi, D. Chelazzi, P. Baglioni, Appl. Phys. A Mater. Sci. Process. 83, 567 (2006)

    Article  ADS  Google Scholar 

  31. P. Calvini, V. Grosso, M. Hey, L. Rossi, L. Santucci, Paper Conserv 12, 35 (1988)

    Article  Google Scholar 

  32. M. Strlič, J. Kolar, M. Zigon, B. Pihlar, J. Chromatogr. A 805, 93 (1998)

    Article  Google Scholar 

  33. L. Santucci, M.P. Zappalà, Restaurator 22, 51 (2001)

    Article  Google Scholar 

  34. N. Toccafondi, G. Poggi, D. Chelazzi, P. Canton, R. Giorgi, P. Baglioni, (2013) (in preparation)

  35. S. Soares, G. Camino, S. Levchik, Polym. Degrad. Stab. 49, 275 (1995)

    Article  Google Scholar 

  36. E. Franceschi, D. Palazzi, E. Pedemonte, J. Therm. Anal. Calorim. 66, 349 (2001)

    Article  Google Scholar 

  37. I.C.A. Sandu, M. Brebu, C. Luca, I. Sandu, C. Vasile, Polym. Degrad. Stab. 80, 83 (2003)

    Article  Google Scholar 

  38. UNI 8282: cellulose in dilute solutions—determination of limiting viscosity number—method in cupri-ethylene-diamine (CED) solution (1994)—Equivalent to the ISO Standard 5351/1

  39. A.-L. Dupont, G. Mortha, J. Chromatogr. A 1026, 129 (2004)

    Article  Google Scholar 

  40. C.H. Stephens, P.M. Whitmore, H.R. Morris, M.E. Bier, Biomacromolecules 9, 1093 (2008)

    Article  Google Scholar 

  41. S. Sequeira, C. Casanova, E.J. Cabrita, J. Cult. Herit. 7, 264 (2006)

    Article  Google Scholar 

  42. E. Stefanis, C. Panayiotou, Restaurator 28, 185 (2007)

    Article  Google Scholar 

  43. E. Stefanis, C. Panayiotou, Restaurator 29, 125 (2008)

    Article  Google Scholar 

  44. E. Stefanis, C. Panayiotou, Restaurator 31, 19 (2010)

    Article  Google Scholar 

  45. Y. Arai, The preparation of powder (Chapman and Hall, London, 1996)

    Google Scholar 

  46. M. Ambrosi, L. Dei, R. Giorgi, C. Neto, P. Baglioni, Langmuir 17, 4251 (2001)

    Article  Google Scholar 

  47. R. Jenkins, R.L. Snyder, Introduction to X-ray powder diffractometry (Wiley, New York, 1996)

    Book  Google Scholar 

  48. Portlandite XRD—RRUFF Database (ID: RO70210.1) (2013), http://rruff.info/portlandite/display=default/. Accessed 17 May 2013

  49. A. Lattuati-Derieux, S. Bonnassies-Termes, B. Lavédrine, J. Chromatogr. A 1026, 9 (2004)

    Article  Google Scholar 

  50. H. Carter, P. Bégin, D. Grattan, Restaurator 21, (2000)

  51. V. Bukovský, Restaurator 21, 55 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rachel Camerini and Laura Gozzini for their collaboration during the experimental tests on paper and canvas. This work was partly supported by CSGI, the Ministry for Education and Research (MIUR, PRIN-2009-P2WEAT), and the European Union, Project NANOFORART (FP7-ENV-NMP-2011/282816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Poggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poggi, G., Toccafondi, N., Melita, L.N. et al. Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Appl. Phys. A 114, 685–693 (2014). https://doi.org/10.1007/s00339-013-8172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8172-7

Keywords

Navigation