A Simulation Tool for Visualizing the Assembly Modes and Singularity Locus of 3RPR Planar Parallel Robots

  • Adrián PeidróEmail author
  • Óscar Reinoso
  • José María Marín
  • Arturo Gil
  • Luis Payá
  • Yerai Berenguer
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 693)


This paper presents a graphical and intuitive tool for simulating the forward kinematics of planar parallel 3RPR robots with arbitrary geometric design. The proposed tool allows the user to visualize the singularity locus of the robot and the evolution of all the solutions to its forward kinematic problem in the complex plane. The user can modify all the geometric design parameters of the robot and instantaneously visualize the effect of these modifications on the singularity locus. As the presented examples illustrate, the proposed tool is especially useful for visualizing the coalescence of different solutions of the forward kinematic problem when approaching higher-order singularities, as well as for visualizing how these special singularities transform when perturbing the different geometric parameters of the robot.


Assembly modes Forward kinematics Parallel robot Simulator Singularity 



Work supported by the Spanish Ministries of Education (grant No. FPU13/00413) and Economy (project No. DPI 2016-78361-R).


  1. 1.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini Software, Environments, and Tools, vol. 25. SIAM, Delhi (2013). ISBN 978-1-611972-69-6zbMATHGoogle Scholar
  2. 2.
    Ben-Horin, P., Shoham, M., Caro, S., Chablat, D., Wenger, P.: SinguLab - a graphical user interface for the singularity analysis of parallel robots based on Grassmann-Cayley Algebra. In: Lenarčič, J., Wenger, P. (eds.) Advances in Robot Kinematics: Analysis and Design, pp. 49–58. Springer Science+Business Media B.V. (2008)Google Scholar
  3. 3.
    Coste, M., Wenger, P., Chablat, D.: Hidden cusps. In: 15th International Symposium on Advances in Robot Kinematics (2016)Google Scholar
  4. 4.
    Gosselin, C.M., Sefrioui, J.: Polynomial solutions for the direct kinematic problem of planar three-degree-of-freedom parallel manipulators. In: Fifth International Conference on Advanced Robotics: ‘Robots in Unstructured Environments’, pp. 1124–1129. IEEE (1991)Google Scholar
  5. 5.
    Hajimirzaalian, H., Moosavi, H., Massah, M.: Dynamics analysis and simulation of parallel robot Stewart platform. In: Proceedings of the 2nd International Conference on Computer and Automation Engineering, pp. 472–477. IEEE (2010)Google Scholar
  6. 6.
    Husty, M.L.: On Singularities of Planar 3-RPR Parallel Manipulators. In: Proceedings of the 14th IFToMM World Congress, pp. 417–422 (2015)Google Scholar
  7. 7.
    Li, Y., Xu, Q.: Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine. Robot. Comput.-Integr. Manuf. 25(3), 630–640 (2009)CrossRefGoogle Scholar
  8. 8.
    Peidró, A., Gil, A., Marín, J.M., Payá, L., Reinoso, Ó.: On the stability of the quadruple solutions of the forward kinematic problem in analytic parallel robots. J. Intell. Robot. Syst. 86(3–4), 381–396 (2017)CrossRefGoogle Scholar
  9. 9.
    Peidró, A., Gil, A., Marín, J.M., Reinoso, Ó.: A web-based tool to analyze the kinematics and singularities of parallel robots. J. Intell. Robot. Syst. 81(1), 145–163 (2016)CrossRefGoogle Scholar
  10. 10.
    Peidró, A., Marín, J.M., Gil, A., Reinoso, Ó.: Performing nonsingular transitions between assembly modes in analytic parallel manipulators by enclosing quadruple solutions. ASME J. Mech. Des. 137(12), 122302–122310 (2015)CrossRefGoogle Scholar
  11. 11.
    Peidró, A., Reinoso, Ó., Gil, A., Marín, J.M., Payá, L., Berenguer, Y.: Second-order taylor stability analysis of isolated kinematic singularities of closed-chain mechanisms. In: Proceedings of the 14th International Conference on Informatics in Control, Automation, and Robotics, ICINCO 2017, vol. 2, pp. 351–358 (2017)Google Scholar
  12. 12.
    Peidró, A., Reinoso, Ó., Gil, A., Marín, J.M., Payá, L.: A simulation tool to study the kinematics and control of 2R PR-PR parallel robots. IFAC-PapersOnLine 49(6), 268–273 (2016)CrossRefGoogle Scholar
  13. 13.
    Peidró, A., Reinoso, O., Gil, A., Marín, J.M., Payá, L.: A virtual laboratory to simulate the control of parallel robots. IFAC-PapersOnLine 48(29), 19–24 (2015)CrossRefGoogle Scholar
  14. 14.
    Petuya, V., Macho, E., Altuzarra, O., Pinto, C., Hernandez, A.: Educational software tools for the kinematic analysis of mechanisms. Comp. Appl. Eng. Educ. 22(1), 72–86 (2014)CrossRefGoogle Scholar
  15. 15.
    Porta, J.M., Ros, L., Bohigas, O., Manubens, M., Rosales, C., Jaillet, L.: The CUIK Suite: analyzing the motion of closed-chain multibody systems. IEEE Robot. Autom. Mag. 21(3), 105–114 (2014)CrossRefGoogle Scholar
  16. 16.
    Thomas, F., Wenger, P.: On the topological characterization of robot singularity loci. a catastrophe-theoretic approach. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 3940–3945. IEEE (2011)Google Scholar
  17. 17.
    Urízar, M., Petuya, V., Altuzarra, O., Diez, M., Hernández, A.: Non-singular transitions based design methodology for parallel manipulators. Mech. Mach. Theory 91, 168–186 (2015)CrossRefGoogle Scholar
  18. 18.
    Wohlhart, K.: Degrees of shakiness. Mech. Mach. Theory 34(7), 1103–1126 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zein, M., Wenger, P., Chablat, D.: Non-singular assembly-mode changing motions for 3-R PR parallel manipulators. Mech. Mach. Theory 43(4), 480–490 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Adrián Peidró
    • 1
    Email author
  • Óscar Reinoso
    • 1
  • José María Marín
    • 1
  • Arturo Gil
    • 1
  • Luis Payá
    • 1
  • Yerai Berenguer
    • 1
  1. 1.Systems Engineering and Automation DepartmentUniversidad Miguel HernándezElcheSpain

Personalised recommendations