Advertisement

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries on Linked Data

  • Ananya DassEmail author
  • Dimitri TheodoratosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10360)

Abstract

Keyword search is the most popular technique for querying the ever growing repositories of RDF graph data on the Web. However, keyword queries are ambiguous. As a consequence, they typically produce on linked data a huge number of candidate results corresponding to a plethora of alternative query interpretations. Current approaches ignore the diversity of the result interpretations and might fail to satisfy the users who are looking for less popular results. In this paper, we propose a novel approach for keyword search result diversification on RDF graphs. Our approach instead of diversifying the query results per se, diversifies the interpretations of the query (i.e., pattern graphs). We model the problem as an optimization problem aiming at selecting k pattern graphs which maximize an objective function balancing relevance and diversity. We devise metrics to assess the relevance and diversity of a set of pattern graphs, and we design a greedy heuristic algorithm to generate a relevant and diverse list of k pattern graphs for a given keyword query. The experimental results show the effectiveness of our approach and proposed metrics and also the efficiency of our algorithm.

References

  1. 1.
    Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM, pp. 5–14. ACM (2009)Google Scholar
  2. 2.
    Aksoy, C., Dass, A., Theodoratos, D., Wu, X.: Diversification of keyword query result patterns. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.) WAIM 2016. LNCS, vol. 9659, pp. 171–183. Springer, Cham (2016). doi: 10.1007/978-3-319-39958-4_14 Google Scholar
  3. 3.
    Bikakis, N., Giannopoulos, G., Liagouris, J., Skoutas, D., Dalamagas, T., Sellis, T.: RDivF: diversifying keyword search on RDF graphs. In: Aalberg, T., Papatheodorou, C., Dobreva, M., Tsakonas, G., Farrugia, C.J. (eds.) TPDL 2013. LNCS, vol. 8092, pp. 413–416. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40501-3_49 CrossRefGoogle Scholar
  4. 4.
    Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: SIGIR, pp. 335–336 (1998)Google Scholar
  5. 5.
    Carterette, B.: An analysis of NP-completeness in novelty and diversity ranking. Inf. Retrieval 14(1), 89–106 (2011)CrossRefGoogle Scholar
  6. 6.
    Chen, H., Karger, D.R.: Less is more: probabilistic models for retrieving fewer relevant documents. In: SIGIR, pp. 429–436. ACM (2006)Google Scholar
  7. 7.
    Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D.: Exploiting semantic result clustering to support keyword search on linked data. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8786, pp. 448–463. Springer, Cham (2014). doi: 10.1007/978-3-319-11749-2_34 Google Scholar
  8. 8.
    Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D.: Keyword pattern graph relaxation for selective result space expansion on linked data. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 287–306. Springer, Cham (2015). doi: 10.1007/978-3-319-19890-3_19 CrossRefGoogle Scholar
  9. 9.
    Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D., Wu, X.: Diversifying the results of keyword queries on linked data. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 199–207. Springer, Cham (2016). doi: 10.1007/978-3-319-48740-3_14 CrossRefGoogle Scholar
  10. 10.
    Dass, A., Dimitriou, A., Aksoy, C., Theodoratos, D.: Incorporating Cohesiveness into keyword search on linked data. In: Wang, J., Cellary, W., Wang, D., Wang, H., Chen, S.-C., Li, T., Zhang, Y. (eds.) WISE 2015. LNCS, vol. 9419, pp. 47–62. Springer, Cham (2015). doi: 10.1007/978-3-319-26187-4_4 CrossRefGoogle Scholar
  11. 11.
    Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: DivQ: diversification for keyword search over structured databases. In: SIGIR, pp. 331–338. ACM (2010)Google Scholar
  12. 12.
    Drosou, M., Pitoura, E.: Search result diversification. ACM SIGMOD Rec. 39(1), 41–47 (2010)CrossRefGoogle Scholar
  13. 13.
    Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching RDF graphs with SPARQL and keywords. IEEE Data Eng. Bull. 33(1), 16–24 (2010)Google Scholar
  14. 14.
    Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In: WWW, pp. 381–390. ACM (2009)Google Scholar
  15. 15.
    Hasan, M., Mueen, A., Tsotras, V., Keogh, E.: Diversifying query results on semi-structured data. In: CIKM, pp. 2099–2103. ACM (2012)Google Scholar
  16. 16.
    Li, G., et al.: Ease: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: SIGMOD, pp. 903–914 (2008)Google Scholar
  17. 17.
    Li, J., Liu, C., Yu, J.X.: Context-based diversification for keyword queries over XML data. Proc. KDE 27(3), 660–672 (2015)Google Scholar
  18. 18.
    Radlinski, F., Dumais, S.: Improving personalized web search using result diversification. In: SIGIR, pp. 691–692. ACM (2006)Google Scholar
  19. 19.
    Ruotsalo, T., Frosterus, M.: Semantic entity search diversification. In: ICSC, pp. 32–39 (2013)Google Scholar
  20. 20.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: ICDE (2009)Google Scholar
  21. 21.
    Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommendation lists. In Recommender Systems, pp. 123–130 (2008)Google Scholar
  22. 22.
    Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW, pp. 22–32. ACM (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations