
Trading Off Popularity for Diversity
in the Results Sets of Keyword Queries

on Linked Data

Ananya Dass(B) and Dimitri Theodoratos(B)

New Jersey Institute of Technology, Newark, USA
{ad292,dth}@njit.edu

Abstract. Keyword search is the most popular technique for querying
the ever growing repositories of RDF graph data on the Web. However,
keyword queries are ambiguous. As a consequence, they typically pro-
duce on linked data a huge number of candidate results corresponding
to a plethora of alternative query interpretations. Current approaches
ignore the diversity of the result interpretations and might fail to sat-
isfy the users who are looking for less popular results. In this paper,
we propose a novel approach for keyword search result diversification on
RDF graphs. Our approach instead of diversifying the query results per
se, diversifies the interpretations of the query (i.e., pattern graphs). We
model the problem as an optimization problem aiming at selecting k pat-
tern graphs which maximize an objective function balancing relevance
and diversity. We devise metrics to assess the relevance and diversity
of a set of pattern graphs, and we design a greedy heuristic algorithm
to generate a relevant and diverse list of k pattern graphs for a given
keyword query. The experimental results show the effectiveness of our
approach and proposed metrics and also the efficiency of our algorithm.

1 Introduction

Keyword search is the most popular technique for querying RDF data on the Web
because it frees the user from knowing a complex structured query language (e.g.,
SPARQL) and allows querying the data without having full or partial knowl-
edge of its structure/schema. The convenience and flexibility of keyword search
comes with a cost. Keyword queries are ambiguous. As a consequence, there is
usually a huge number of candidate results of which very few are relevant to the
user intent. Several approaches try to exploit structural or semantic character-
istics of the data and/or query results in order to filter out irrelevant results.
A better technique ranks the results in descending order of their estimated rel-
evance [7,13]. The relevance is usually estimated based on scoring functions
which employ statistics-based IR-style metrics for flat documents (e.g., tf*idf or
PageRank) adapted to the structural characteristics of the data. Ranking can
be complemented with top-k processing, wherein gains can be achieved in the
processing time by avoiding the computation of results which are not expected
to be in the top-k positions [20].
c© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 151–170, 2017.
DOI: 10.1007/978-3-319-60131-1 9

152 A. Dass and D. Theodoratos

Even though, the statistics-based metrics can be effective in returning the
most popular results, they fail to capture the diversity of the result set and
may dissatisfy the users who look for less popular results [11,12]. For instance, a
user issuing the query “python” could be interested in searching about the snake
“python”, the “Python” programming language, or the Monty “Python” comedy
group. If results are returned to the user based on the most plausible interpre-
tation of the query (in this case “Python” programming language) then there
is an inherent risk of leaving the user who is interested in “python” snake or in
Monty “Python” comedy group. This problem is known as the over-specialization
problem [18]. Diversifying the results retrieved for a keyword query could be a
meaningful solution to this problem. By introducing diversity in the result set,
the search mechanism can maximize the user’s chance of finding at least one of
the retrieved results relevant to her intent [6]. Additionally, even if a keyword
query has a single, clearly defined interpretation, it can still be under-specified to
some extent. For example, a user searching for “apple electronics” may be inter-
ested in laptops, desktops, or the best selling apple electronics, or sale on apple
electronics, or service centers for apple electronics. Therefore, another motive for
diversifying search results is to cover different aspects of the entire result space
and enable the user to explore and find desired results [12].

Search result diversification is a well-studied problem in Information
Retrieval and Recommendation Systems [12,14]. However, the problem of diver-
sifying the results of keyword search over RDF graph data has remained under-
addressed. In recent years, there is a proliferation of RDF repositories on the
Web, and keyword search is commonly used for retrieving data from these repos-
itories. While ranking ensures that the most popular results of a given keyword
query are ranked on top, it is often the case that the top results tend to be
homogeneous, making it difficult for users interested in less popular aspects to
find results relevant to their intent. Thus, result diversity can play a big role in
ensuring that the users get a broad view of the different aspects of the results
and in satisfying a maximum number of users who are interested in different
interpretations of the query.

Our Approach. In this paper, we propose a novel technique for diversifying
keyword search results on RDF graph data. We formulate the diversification
problem as an optimization problem over pattern graphs. Pattern graphs are
structured queries which cluster together results with the same structural and
semantic characteristics and represent alternate interpretations of a keyword
query. By diversifying pattern graphs instead of query results, we address the
data scalability problem of diversification since pattern graphs can be computed
efficiently by exploiting a structural summary of the RDF data without exhaus-
tively computing the query results. Further, by diversifying pattern graphs we
diversify the alternative interpretations of the query. Given a positive integer
k, our diversification approach aims at selecting a k-size set of pattern graphs
which maximizes the number of pattern graphs which are relevant to at least one
user intent. In order to do so, our approach trades off popularity for diversity.

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 153

Fig. 1. (a) An RDF graph D, (b) The Structural Summary S of D.

Fig. 2. Patterns graphs of the query Q = {Johns, Hopkins, Computer, Science}.

As an example, consider the RDF data graph D of Fig. 1(a), and its struc-
tural summary S in Fig. 1(b). Consider also the keyword query Q = {Johns,
Hopkins, Computer, Science} on D. Figure 2 shows five pattern graphs of Q
computed over S. These pattern graphs are alternative interpretations of Q.
For instance, the pattern graph P1 interprets “Johns” as a student advised by
Professor “Hopkins” who is the chair of the “Computer Science” department.
Among those pattern graphs P1, P2, P4 and P5 provide meaningful interpreta-
tions while, pattern graph P3 does not seem to be relevant to a user intent. Let
us assume that the pattern graphs are ranked on popularity in descending order
as follows: P1, P2, P3, P4, P5. Let us also assume that we are required to return
only three pattern graphs. If we select the relevant pattern graphs based on pop-
ularity, we are going to return the list (P1, P2, P3). Therefore, we are returning
only two pattern graphs which are relevant to a user intent. We can now try to
also diversify the pattern graphs. We can do so by taking into account semantic
dissimilarities between them. For instance, P1 and P2 interpret the keywords in
the same way: “Johns” is a student, “Hopkins” is a professor and “Computer
Science” is a department and they link these interpretations in a quite similar
way. Pattern graph P3 shares three out of four keyword interpretations with
P1 and P2 (for the keywords “Johns”, “Computer”, and “Science”) and some

154 A. Dass and D. Theodoratos

connections (“major”), therein displaying a certain degree of semantic similarity
to P1 and P2. Further, the interpretations of the keywords in P4 and P5 and the
connections between them have very little or nothing in common with those of
the rest of the patterns graphs (or between them). Therefore, if we try to balance
popularity and diversity in the selected three pattern graph set, most probably
the pattern graphs P1, P4 and P5 will be selected. In this case, all three returned
pattern graphs are relevant to a user intent. We formalize this intuition in the
following sections.

Contribution. The main contributions of the paper are the following:

• We formalize the problem of diversifying the pattern graphs returned by a
keyword query on an RDF data graph. Exploiting pattern graphs addresses
the scalability problem faced by keyword search approaches on RDF graphs.
We define the problem as an optimization problem which aims at selecting a
k-size set of pattern graphs that maximizes an objective function on relevance
and diversity.

• In order to measure the relevance of a pattern graph to a keyword query,
we devise a relevance metric. This metric exploits the tf*idf measure and
popularity scores of the different semantic components of the pattern graph.

• We express the diversity of a set of pattern graphs as the average pairwise
semantic distance between pattern graphs. To assess the pairwise pattern
graphs semantic distance, we introduce an original metric. based on the sim-
ilarities between the semantic interpretations of the query keywords in the
pattern graphs and the way they are semantically connected but also on the
dissimilarity between the concepts involved in the pattern graphs.

• To cope with a high complexity of the diversification problem, we design a
greedy heuristic algorithm for computing a list of top-k pattern graphs trading
off popularity for diversity.

We ran extensive experiments to evaluate and fine-tune the effectiveness of the
approach and the proposed metrics and the efficiency of the algorithm.

2 Data Model and Pattern Graph Computation

Data Model. The Resource Description Framework (RDF) provides a frame-
work for representing information about Web resources in a graph form. The
RDF vocabulary includes elements that can be broadly classified into Classes,
Properties, Entities and Relationships. All the elements are resources. Similarly
to [7,8], our data model is an RDF graph defined as follows:

Definition 1 (RDF Graph). An RDF graph is a quadruple G = (V,E,L, l):

V is a finite set of vertices, which is the union of three disjoint sets: VE (repre-
senting entities), VC (representing classes) and VV (representing values).

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 155

Fig. 3. (a) An RDF graph, (b), (c), (d) and (e) class, relationship, value and property
matching constructs, respectively, (f) inter-construct connection and result graph.

E is a finite set of directed edges, which is the union of four disjoint sets:
ER (inter-entity edges called Relationship edges which represent entity
relationships), EP (entity to value edges called Property edges which repre-
sent property assignments), ET (entity to class edges called type edges which
represent entity to class membership) and ES (class to class edges called
subclass edges which represent class-subclass relationship).

L is a finite set of labels that includes the labels “type” and “subclass”.
l is a function from VC ∪ VV ∪ ER ∪ EP to L. That is, l assigns labels to class

and value vertices and to relationship and property edges.

Entity and class vertex and edge labels are Universal Resource Identifiers
(URIs). Vertices are identified by IDs which in the case of entities and classes
are URIs. Every entity belongs to a class. Figure 3(a) shows an example RDF
graph. For simplicity, vertex and edge identifiers are not shown in this example.

Query Language Semantics. A query Q on an RDF graph G is a set of
keywords. A keyword instance of a keyword k in Q is a vertex or edge label in
G containing k. The answer of Q on G is a set of result graphs of Q on G.
Each result graph is a minimal subgraph of G involving at least one instance
of every keyword in Q and is formally defined below. In order to facilitate the
interpretation of the semantics of the keyword instances, every instance of a
keyword in Q is matched against a small subgraph of G which involves this
keyword instance and the corresponding class vertices. This subgraph is called
matching construct. Figures 3(b), (c), (d) and (e) show a class, relationship, value
and property matching construct, respectively, for different keyword instances
in the RDF graph of Fig. 3(a). Underlined labels in a matching construct denote
the keyword instances. Each matching construct provides information about the
semantic context of the keyword instance under consideration. For instance, the
matching construct of Fig. 3(d) shows that Tom is the name of an entity R2 of
type Researcher.

156 A. Dass and D. Theodoratos

A signature of Q is a function that matches every keyword k in Q to a
matching construct of k in G. Given a query signature S, an inter-construct
connection between two distinct matching constructs C1 and C2 in S is a simple
path augmented with the class vertices of the intermediate entity vertices in the
path (if not already in the path) such that: (a) one of the terminal vertices in
the path belongs to C1 and the other belongs to C2, and (b) no vertex in the
connection except the terminal vertices belong to a construct in S. Figure 3(f)
shows an inter-construct connection between the matching constructs for key-
words Project and Tom in the RDF graph of Fig. 3(a). The matching constructs
are shaded and the inter-construct connection is circumscribed.

A subgraph of G is said to be connection acyclic if there is no cycle in the
graph obtained by viewing its matching constructs as vertices and its inter-
construct connections between them as edges. Given a signature S for Q on
G, a result graph of S on G is a connected, connection acyclic subgraph of G
which contains only the matching constructs in S and possibly inter-construct
connections between them. A result graph for Q on G is a result graph for a
signature of Q on G. Figure 3(f) shows a result graph for the query {Project,
Tom} on the RDF graph of Fig. 3(a).

The Structural Summary and Pattern Graphs. In order to construct pat-
tern graphs we use the structural summary of the RDF graph as in [10,20].
Intuitively, the structural summary is a graph that summarizes the RDF graph.

Definition 2 (Structural Summary). The structural summary of an RDF
graph G is a vertex and edge labeled graph constructed from G as follows:

1. Merge every class vertex and its entity vertices into one vertex labeled by the
class vertex label and remove all the type edges from G.

2. Merge all the value vertices which are connected with a property edge labeled
by the same label to the same class vertex into one vertex labeled by the union
of the labels of these value vertices. Merge also the corresponding edges into
one edge labeled by their label.

Fig. 4. (a) Structural Summary G′, (b), (c), (d) and (e) are matching constructs for
keywords in the keyword query Q1={Tom, author, Project, title} on G′ (f) Pattern
Graph of Q on G′.

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 157

3. Merge all the relationship edges between the same class vertices which are
labeled by the same label into one edge with that label.

Figure 4(a) shows the structural summary for the RDF graph G of Fig. 3(a).
Similarly to matching constructs on the data graph we define matching
constructs on the structural summary. Since the structural summary does not
have entity vertices, a matching construct on a structural summary possess one
distinct entity variable vertex labeled by a distinct variable for every class vertex
and a distinct value variable for every value vertex label which does not contain
a keyword instance. Figure 4(b), (c), (d), and (e) show the class, relationship,
value and property matching constructs for the keywords “Project”, “author”,
“Tom”, and “title”, respectively, on the structural summary of Fig. 4(a).

Pattern graphs are the subgraphs of the structural summary, strictly con-
sisting of one matching construct for every keyword in the query Q and the
connections between them without these connections forming a cycle.

Definition 3 (Pattern Graph). A (result) pattern graph for a keyword query
Q is a graph similar to a result graph for Q, with the following two exceptions:

(a) The labels of the entity vertices in the result graph, if any, are replaced
by distinct variables in the pattern graph. These variables are called entity
variables and they range over entity labels.

(b) The labels of the value vertices are replaced by distinct variables whenever
these labels are not the keyword instances in the result graph. These vari-
ables are called value variables and they range over value labels in the RDF
graph.

Figure 4(f) shows an example of a pattern graph, for the keyword query
Q = {Tom, author, project, title} on the RDF graph of Fig. 3(a). This
pattern graph is computed over the structural summary of Fig. 4(a) combing
the matching constructs of Fig. 4(b), (c), (d) and (e). Labels R, P , and Pr are
entity variables and X is a value variable.

Given a keyword query Q over an RDF data graph G, we first find all the
matching constructs for all the keywords in Q on the structural summary G′

and then generate all the pattern graphs on G′ for all possible signatures of Q.

3 Balancing Relevance and Diversity

We provide in this section a formal definition of the problem we address and
then elaborate on its components: how to assess the relevance and the diversity
of sets of pattern graphs.

3.1 Problem Statement

Our goal is to provide the user with a set of pattern graphs which is relevant
and diverse. To this end, we define the problem as an optimization problem. Let

158 A. Dass and D. Theodoratos

G denote an RDF data graph, Q be a keyword query on G, P be the set of
pattern graphs of Q on G and k be a positive integer. Given a subset S of P, let
relevance(S, Q) denote the relevance of S with respect to Q, and diversity(S)
denote the diversity of set S. We aim at selecting a subset S of P which maxi-
mizes the objective function α ∗ relevance(S, Q) + (1 − α) ∗ diversity(S), where
α ∈ [0, 1], is a parameter which tunes the importance of relevance and diversity.
In other words,

S ∈ arg maxS′⊆S, |S′|=k(α ∗ relevance(S ′, Q) + (1 − α) ∗ diversity(S ′))

The tuning parameter α allows to give more importance to the relevance or diver-
sity of the pattern graph set to be selected. If α = 1, the selected pattern graph
set will have the most relevant pattern graphs without considering diversity. If
α = 0, the pattern graph set will be selected solely based on its diversity.

We assume that the relevance of one pattern graph is independent of the
relevance of another pattern graph to Q. The relevance of a set of pattern graphs
S ′ of size k to a keyword query Q is the average relevance of its pattern graphs:

relevance(S ′, Q) = 1/k ∗ (
∑

P∈S′ relevance(P,Q))

where relevance(P,Q) ∈ [0, 1] and denotes the relevance of pattern graph P to
Q. The diversity of S ′ is defined as:

diversity(S ′) =
∑

Pi,Pj∈S′,Pi �=Pj

dist(Pi, Pj)/k(k − 1)

where dist(Pi, Pj) denotes the semantic distance between pattern graphs Pi and
Pj ; dist(Pi, Pj) ∈ [0, 1]. Dividing the sum by the total number of pattern graph
pairs, normalizes diversity(S ′) in the [0, 1] range. We define in the next sections
metrics for assessing relevance(P,Q) and dist(Pi, Pj).

3.2 Assessing the Relevance of a Pattern Graph

Our approach exploits statistical information for the popularity (frequency) of
the class and value vertices and the property and relationship edges of the pattern
graphs in the RDF graph. In doing so, it also takes into account structural and
semantic information of the pattern graphs. In this sense, two edges with the
same label are different if they involve entity variables of different types. For
assessing the popularity of value vertex vertices with keyword instances in the
pattern graph, we employ the well known tf*idf metric of Information Retrieval
(IR) adapted to the syntactic and semantic features of the RDF data.

Consider a pattern graph P over an RDF data graph G. Let C1, . . . , Cn be
the class vertex labels in P . Let also |VCi

| denote the number of entities of type
Ci in the RDF graph G, and |VE | denote the total number of entities in G. The
popularity of the class vertices of P is given by the formula:

popc(P) = 1/n ∗ (
∑

Ci∈{C1,...,Cn} |VCi
|/|VE |)

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 159

Let P1, . . . , Pm denote the distinct (owner class vertex, property edge label)
pairs in P . Let also |EPi

| denote the number of property edges complying with
Pi in the RDF graph G, and |EP | denote the total number of property edges in
G. The popularity of the property edges of P is defined as:

popp(P) = 1/m ∗ (
∑

Pi∈{P1,...,Pm} |EPi
|/|EP |)

Let R1, . . . , Ru denote the distinct (domain class vertex, relationship edge
label, range class vertex) triples in P . Let also |ERi

| denote the number of
relationship edges complying with Ri in the RDF graph G, and |ER| denote the
total number of relationship edges in G. The popularity of the relationship edges
of P is given by the formula:

popr(P) = 1/u ∗ (
∑

Ri∈{R1,...,Ru} |ERi
|/|ER|)

For defining the popularity of value vertices with keyword instances in a
pattern graph, we modify the tf*idf metric so that it applies to RDF graphs. The
metric tf*idf (term frequency, inverse document frequency) used in IR reflects
how important a term is to a document in a corpus of documents. tf(t, d) denotes
the frequency of a term t in a document d while idf(t) is the logarithmically scaled
inverse fraction of the documents that contain the term. In the context of an
RDF graph G, the set of property edges in G which have the same label L and
are incident to entity vertices of a type C correspond to a document. This set of
property edges is denoted by E(C,L). Given a keyword ki and a set of property
edges E(C,L), let E(ki, C, L) be the subset of E(C,L) which contains only those
property edges whose value comprises ki. Then:

tf(ki, E(C,L)) = |E(ki, C, L)|/|E(C,L)|
Let W denote the set of all property edge sets E(C,L) in G. For a given keyword
ki, let Wi be the subset of W consisting of those property edge sets E(C,L) such
that tf(ki, E(C,L)) > 0 (that is, property edge sets where ki occurs in the value
of at least one of their property edges). Then:

idf(ki) = log(|W |/|Wi|)
Let k1, . . . , kj denote the keywords which appear in the labels of value vertices
in a pattern graph P . Note that, multiple keywords can appear in the label of
a value vertex in P . Let vi denote the value vertex whose label contains the
keyword ki and Li is the label of the property edge connecting vi to an entity
variable vertex of type C in P . This means that ki also appears in the values
for the set of property edges for the (Ci, Li) pair. Then, the popularity of value
vertices containing keywords in P is given by the formula:

popv(P) = 1/j ∗ (
∑

ki∈{k1,...,kj} tf(ki, (Ci, Li)) ∗ idf(ki))

We define the relevance of pattern graph P to keyword query Q as the sum
of the popularity of the components of P as follows:

160 A. Dass and D. Theodoratos

relevance(P,Q) = 1/4 ∗ (
∑

i∈ {c,p,r,v} popi(P))

Clearly, the values of popi(P) are in the range [0, 1]. By dividing the sum by 4
we guarantee that relevance(P,Q) also ranges between 0 and 1.

3.3 Assessing the Semantic Distance Between Two Pattern Graphs

In order to measure the semantic distance of two pattern graphs, we consider
both structural and semantic features of the pattern graphs.

The first factor we consider in assessing the distance of two pattern graphs
is the similarity of their matching constructs. Remember that the matching
constructs are small graphs that involve only a single keyword instance and
provide a context for interpreting the keywords. Given a pattern graph P for a
keyword query Q = {k1, . . . kn}, let mc(P) denote the set of matching constructs
of Q—one for every keyword in Q. The larger the number of keywords which
are interpreted in the same way in the two pattern graphs, the more similar the
pattern graphs are. The similarity of the matching constructs in the two pattern
graphs is given by the formula

mc sim(P1, P2) = (|mc(P1) ∩ mc(P2)|)/n

where n is the number of keywords in Q. Note that n = |mc(P1)| = |mc(P2)|.
Clearly, mc sim(P1, P2) = 1 if P1 and P2 share the same matching constructs,
and mc sim(P1, P2) = 0 if they have no common matching constructs.

For instance, Fig. 5 shows 5 pattern graphs of a query with 5 keywords.
Intuitively, P2 and P3 are more similar to P1 than P4 and P5 because P4 and
P5 interpret the keyword semantics differently. Metric mc sim catches this
intuition since mc sim(P1, P2) = mc sim(P1, P3) = 5/5 while mc sim(P1, P4) =
mc sim(P1, P5) = 4/5.

Fig. 5. Pattern graphs of Q={Tom, semantics, publication, hopper, project}.

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 161

Although P2 and P3 have the same common matching constructs with P1, P2

looks more similar to P1 than P3 does. Therefore, the second factor we consider is
to what extent matching constructs for the same keywords are connected in the
same way in the two pattern graphs. The higher the number of pairs of keywords
in P1 and P2 whose matching constructs are connected in the same way in the
two pattern graphs, the more similar P1 and P2 are. Of course, if the matching
constructs of two keywords are not the same in P1 and P2, their connections
cannot be the same in the two pattern graphs and this pair of keywords does
not contribute to the similarity of P1 and P2. We define a connection between
two keywords ki and kj of Q in a pattern graph P of Q as a graph consisting of
the matching constructs of ki and kj , respectively, and a simple path between
these matching constructs in P augmented with type edges and class vertices for
every entity variable vertex in the path. Let z be the number of unordered pairs
of query keywords which have the same connection in the two pattern graphs.
The similarity of the keyword pair connections in P1 and P2 is given by:

conn sim(P1, P2) =
z

(n(n − 1))/2

where n is the number of keywords in Q. The denominator reflects the number
of unordered keyword pairs for the keywords in Q. Similarly to mc sim(P1, P2),
conn sim(P1, P2) ranges between [0,1], with 1 indicating that the matching con-
structs for all the keywords and all the connections between them are the same.

In the example of Fig. 5 both pattern graphs P2 and P3 have five com-
mon matching constructs with P1. However, conn sim(P1, P2) = 6/10 and
conn sim(P1, P3) = 4/10. Intuitively, P2 looks more similar to P1 than P3 to P1.

Measuring the similarity of two pattern graphs P1 and P2 based solely
on the similarity of matching constructs and matching construct connections,
mc sim(P1, P2) and conn sim(P1, P2), cannot entirely capture their semantic
closeness. Compare, for instance, the pattern graphs P4 and P5 with the pattern
graph P1 in Fig. 3. Both P4 and P5 have 4 keyword matching constructs and 6
pairs of matching construct connections in common with P1. However, our intu-
ition suggests that P5 is less similar (more dissimilar) to P1 than P4 as it has
the class vertex (concept) “Journal” which does not appear in P1. In contrast,
P1 and P4 have the same class vertices. Therefore, we introduce the metric of
concept dissimilarity to capture the dissimilarity of two pattern graphs. Let c(P)
denote the set of class vertices in a pattern graph P . Given two pattern graphs
P1 and P2 of a keyword query,

concept dsim(P1, P2) =
|(c(P1) ∪ c(P2)) − (c(P1) ∩ c(P2))|

|c(P1) ∪ c(P2)|
concept dsim(P1, P2) ranges between 0 (when P1 and P2 have all their class ver-
tices in common) and 1 (when P1 and P2 do not have common class vertices). The
higher the value of concept dsim(P1, P2), the more distant the pattern graphs
P1 and P2 are.

162 A. Dass and D. Theodoratos

Taking into account all the factors, we define the distance dist(P1, P2) of two
pattern graphs P1 and P2 as shown next

dist(P1, P2) =
1 − [(mc sim(P1, P2) + conn sim(P1, P2))/2 − concept dsim(P1, P2)]

2

Note that concept dsim(P1, P2) is considered with a negative sign since it
expresses dissimilarity.

dist(P1, P2) = 0 when the two pattern graphs are the same and
dist(P1, P2) = 1 when concept dsim(P1, P2) = 1.

4 Algorithm

In this section, we present an algorithm for the problem of balancing the rel-
evance and diversity of sets of pattern graphs stated in Sect. 3.1. Exhaustively
generating all size-k subsets of a set of pattern graphs and computing their rele-
vance and diversity in order to find an optimal one has exponential complexity in
the number of the pattern graphs. In fact, different versions of the diversification

Algorithm 1. PGDiversification (Pattern Graph Diversification)
Input: Q = {k1, . . . , kn}: a keyword query with n keywords,

S: structural summary of the data graph,
α: tuning factor, k: size of the output list.

Output: Pdiv: set of diversified pattern graphs of size k.
1: for all ki ∈ Q do
2: Li ←{set of all matching constructs of ki on S};

3: P ← ComputePatternGraphs({×n
i=1Li}, S);

4: P ← SortByRelevance(P);
5: Pdiv ← P[0];
6: i = 1;
7: while i < k do
8: j = i;
9: NextIndex = −1;

10: NextScore = 0;
11: while j � |P| do
12: distance = 0;
13: for all pi ∈ Pdiv do
14: distance = distance + dist(pi, P[j])

15: CurrentScore = α ∗ relevance(P[j], Q) + (1 − α) ∗ distance/|Pdiv|;
16: if CurrentScore > NextScore then
17: NextScore = CurrentScore;
18: NextIndex = j;

19: j = j + 1;

20: Pdiv.add(P[NextIndex]);
21: swapPGs(P[i], P[NextIndex]);
22: i = i + 1;

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 163

problem have previously been shown to be NP-hard [1,5,12,14]. Therefore, we
design a heuristic algorithm, called PGDiversification, which greedily selects
a new pattern graphs at every iteration and incrementally computes the rele-
vance and diversity of pattern graph sets. Algorithm PGDiversification takes
as input a keyword query Q, the structural summary S of an RDF graph, the
tuning parameter α, and a positive integer k. The output is a subset of the set
of pattern graphs of Q on S of size k.

The algorithm starts by finding all the matching constructs of the keywords
in query Q on S (lines 1–2) and then generates the set P of pattern graphs
for all possible signatures of Q (line 3). The pattern graphs are generated as
r-radius Steiner graphs [16]. Different algorithms can be used for generating
the pattern graphs (for instance, in [8,20]). The way the pattern graphs are
computed is orthogonal to our approach for pattern graph diversification. The
pattern graphs of P are ranked in descending order of their relevance (line 4).
The variable Pdiv represents the output set of size k which is a subset of the
set of pattern graphs P. Initially, the set Pdiv contains a pattern graph with the
highest relevance (line 5). Subsequently, at every iteration, a pattern graph is
chosen for inclusion in Pdiv so that the new Pdiv set maximizes the objective
function (line 8–22). The process terminates when |Pdiv| = k.

5 Experimental Results

We implemented our approach and ran experiments to examine: (a) the effective-
ness of our distance metric in assessing the semantic distance of pattern graphs,
and the quality of our approach in retrieving a maximum number of relevant
pattern graphs, (b) the quality of the approximation of the greedy heuristic
algorithm, and (c) the efficiency of the PGDiversificiation algorithm in comput-
ing the set of pattern graphs that trades off relevance and diversity.

5.1 Datasets and Queries

We used the DBLP1 and Jamendo2 real datasets for our experiments. DBLP is
a bibliography database of 600 MB of size, containing 8.5 M triples. Jamendo is
a repository of Creative Commons licensed music of 85 MB of size, containing
1.1 M triples. The experiments were conducted on a standalone machine with an
Intel i7-5600U@2.60GHz processor and 8GB memory. We experimented with a
large number of queries and Table 1 reports on 10 of them for each dataset in
the interest of space.

5.2 Effectiveness Results

Effectiveness of the Distance Metric. We first want to examine the quality
of our distance metric. To this end, for each of the queries in Table 1, we select five
1 https://datahub.io/dataset/l3s-dblp.
2 http://dbtune.org/jamendo/.

https://datahub.io/dataset/l3s-dblp
http://dbtune.org/jamendo/

164 A. Dass and D. Theodoratos

Table 1. Keyword Queries on the Jamendo and DBLP Datasets

Keyword queries on Jamendo Keyword queries on DBLP

Q ID Keywords Q ID Keywords

J1 document, teenage, fantasie D1 concatenable, aspectisation, oliver

J2 nuts, spy4, lemonade D2 dataflow, quantization

J3 divergence, obsession, lyrics D3 donatella, intermittent, congestion

J4 reflection, record D4 balvinder, coscheduling, article

J5 document, cool, divergence D5 springer, inproceedings

J6 cicada, performance D6 skogstad, tensorial, morphology

J7 extraordinary, blissful, madness D7 hierarchical, hybridization

J8 awesome, passion, spy4 D8 person, tolga, coscheduling

J9 guitarist, lemonade D9 charles, peephole, inproceedings

J10 disgusting, revenge, fantasie D10 tolga, forward, normalizability

of their pattern graphs. We ask three expert users to score the semantic similarity
of each one of these five pattern graphs with another pattern graph (the pattern
graph with the highest relevance). The scores are integers in the range [0, 3].
A score of 0 denotes that the two pattern graphs are totally dissimilar. The
ground truth is determined by majority vote. We also use our distance metric
dist(P1, P2) to rank the five pattern graphs in descending order of their distance
from the most relevant pattern graph. We assess the quality of the ranking based
on dist(P1, P2) using the normalized Discounted Cumulative gain (nDCG) metric
which is defined as follows. The discounted cumulative gain (DCG) for position
n in a ranked list is given by the following formula:

DCGn =
∑n

i=1

2reli − 1
log2(i + 1)

In order to take into account equivalent classes of pattern graphs in the
ranked lists (that is, pattern graphs which have the same rank), we have
extended nDCG by introducing minimum, maximum and average values for it.
The nDCGmax value of a ranked list RLe with equivalence classes corresponds
to the nDCG value of a strictly ranked (that is, without equivalence classes)
list obtained from RLe by ranking the pattern graphs in the equivalence classes
correctly (that is, in compliance with the scores given by the expert users). The
nDCGmin value of RLe is defined analogously. The nDCGavg value of RLe is the
average nDCG value over all strictly ranked lists obtained from RLe by ranking
the pattern graphs in the equivalence classes in all possible ways. The nDCG val-
ues range between 0 and 1. Figure 6(a) and (b) show the nDCGmin, nDCGmax

and nDCGavg values for the queries on the two datasets. As one can see, all
the values are very close to 1. This implies that our distance metric successfully
assesses the semantic similarity of two pattern graphs.

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 165

Fig. 6. nDCGmax, nDCGmin and nDCGavg for the queries on the two datasets

Fig. 7. Prec@k for k = 3, 5 and 10, for the queries of Table 1 on the two datasets based
solely on the relevance metric (α = 1).

Fig. 8. Prec@k for k = 3, 5 and 10, for the queries of Table 1 on the two datasets based
on the relevance and diversity metrics (α = 0.5).

Effectiveness of the Approach. In order to evaluate the quality of the app-
roach in retrieving relevant results, we measure the relevant results retrieved
by Algorithm PGDiversification for different queries when only our relevance
metric, and when our metric which balances relevance and diversity is taken into
account. Three expert users characterize the retrieved pattern graphs as relevant
or not to the query based on whether the pattern graphs express meaningful
interpretations of the query and ground truth is determined by majority vote.

166 A. Dass and D. Theodoratos

Table 2. MAP@k for the queries of Table 1 on the two datasets

JAMENDO DBLP

Rel. Rel. & Div. Rel. Rel. & Div.

MAP@10 0.53 0.62 0.51 0.66

MAP@5 0.72 0.77 0.72 0.84

MAP@3 0.86 0.86 0.82 0.91

The quality of our approach on a query is expressed by precision@k (prec@k),
which is the ratio of the number of relevant pattern graphs in the set of k pattern
graphs returned by our algorithm to k. Figure 7 displays prec@k for k = 3, 5 and
10 for the queries of Table 1 when only the relevance metric is taken into account
(that is, when the tuning parameter α = 1). Figure 8 displays prec@k for k = 3,
5 and 10 for all the queries of Table 1 when both the relevance and diversity
metrics are taken into account (that is, when the tuning parameter α = 0.5). As
we can see, for each value of k and for each dataset, precision@k is the same
or better in most of the queries. This observation demonstrates the benefit of
introducing diversity in the process of selecting the set of k pattern graphs as,
when α = 0.5, a larger number of the selected pattern graphs can satisfy at least
one user.

We also measure the mean average precision at k (MAP@k) for two different
values of the tuning parameter: α = 1 and α = 0.5. MAP@k is the mean of
the average precision at k for the queries of Table 1. The values of MAP@k are
shown in Table 2 and summarize the measurements displayed in Figs. 7 and 8.
As one can see, taking into account diversity (α = 0.5) improves MAP@k in all
cases. For instance, it improves MAP@10 by 17% on the Jamendo and by 29%
on the DBLP dataset. The increase is more pronounced when k is larger. This
is expected since a larger k offers more chances to the algorithm to diversify the
selected pattern graph set.

Calibrating the Tuning Parameter. In order to select a good value for the
tuning parameter α we ran experiments to measure MAP@k for k = 3, 5, and

Fig. 9. MAP@k for k = 3, 5 and 10, for the queries of Table 1 with different α values.

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 167

Fig. 10. Closeness (%) of the objective function values computed by algorithm PGDi-
versification to the optimal ones, for k = 3, 5, 10, for the queries on the two datasets.

10, for all the queries of Table 1, varying α from 0 to 1 in increments of 0.25. The
results are depicted in Fig. 9. As one can see, the highest values for MAP@k
are displayed for α = 0.5 for all values of k. Therefore, α has been set to 0.5 in
all other experiments. Reasonably, the lowest values for MAP@k are displayed
for α = 0, since all the pattern graphs (with the exception of the initial most
popular pattern graph) are selected based on the semantic distance metric and
the popularity metric, which is a good criterion for relevance, did not contribute
to the selection of relevant pattern graphs.

5.3 Quality of the Approximation by the HeuRistic Algorithm

We also wanted to evaluate the quality of the approximation of the optimal
solution by the heuristic greedy algorithm. We computed the optimal solution
and measured the values of the objective function for k = 3, 5, and 10, by running
an algorithm which exhaustively enumerates all combinations of k pattern graphs
from the generated set of candidate pattern graphs. This was possible since the
queries were selected so that they do not generate on the structural summary
a huge number of candidate pattern graphs. Figure 10 displays the closeness of
the objective function values produced by our algorithm as a percentage to the
optimal ones for k = 3, 5, and 10, for all the queries of Table 1. Not surprisingly,
the closeness is around 50% for k = 3 since the selected pattern graph set is
always initialized with the most popular pattern graph which might not be part
of the optimal solution and the next pattern graph selections are based on their
distance from previously selected ones. However, it moves very close to 100%
already for k = 5 for all queries on both datasets, and it is perfect or almost
perfect for k = 10. These results suggest that the greedy heuristic produces a
good approximation of the optimal solution.

5.4 Efficiency Results

We ran Algorithm PGDiversification for all the queries of Table 1. The execu-
tion time is reported in Fig. 11 for pattern graphs sets of size k = 5 and tuning

168 A. Dass and D. Theodoratos

Fig. 11. Processing time of PGDiversification for the queries on the two datasets.

parameter α = 0.5. The execution time for each query consists of three compo-
nents: (a) the generation of the pattern graphs using the structural summary,
(b) the computation of the relevance of the pattern graphs and the selection of
one with the highest relevance, and (c) the application of the greedy heuristic
for generating the list of k pattern graphs which is both relevant and diversified.
One can see that the execution time is dominated by the pattern graph gen-
eration process. This is expected since computing the pattern graphs requires
accessing the database for finding all the keyword matching constructs.

Overall, our approach displays interactive execution times (�1 s) on both
datasets. This performance demonstrates that our approach succeeds in improv-
ing the number of relevant pattern graphs selected without suffering from the
scalability issue of keyword search approaches.

6 Related Work

The goal of the diversification problem is to solve the over-specialization problem
where a highly homogenous set of results is returned to the user due to relevance-
based ranking and/or personalization. Result diversification is a way to minimize
user dissatisfaction by providing a diverse set of results. In general, the diversi-
fication problem is defined as selecting a subset of the retrieved result set with
k results such that the diversity among these k results is maximized. In [4], the
concept of maximal marginal relevance (MMR) is used to tradeoff between rel-
evance and novelty. In [14] an axiomatic approach for result diversification is
adopted. Reference [12] is a review of different definitions for diversity, and of
algorithms and evaluation metrics for diversification. It categorizes diversity def-
initions as content-based [22], novelty-based [21] and coverage-based [1]. Most of
these approaches perform diversification as a post-processing or re-ranking step
of candidate result retrieval which can incur a huge computation cost since the
number of candidate results can be extremely large for a keyword query. In con-
trast, our diversification process is part of a query disambiguation phase which
takes place before extracting any search results. We compute pattern graphs

Trading Off Popularity for Diversity in the Results Sets of Keyword Queries 169

corresponding to alternate interpretations of a given keyword query since they
offer clear semantics and quality information for diversification. This way, we
also avoid the computation overhead of computing all relevant results.

A number of papers study search result diversification on structured and
semi-structured databases [2,11,15,17]. However, there are only few contribu-
tions on diversifying keyword search results on RDF data. Previous techniques
cannot be directly applied in this context as the semantic information in RDF
data graphs requires different criteria and methods. [19] addresses diversifica-
tion of entity search results using a categorization technique to cluster similar
entities. [3,9] addresses diversification issues of keyword query results on RDF
data, but do not consider relevance aspects. In this paper, we exploit structural
and semantic characteristics of pattern graphs for capturing their relevance to a
query, and also the similarity and dissimilarity between pattern graphs.

7 Conclusion

We presented a novel technique which exploits pattern graphs of a keyword query
instead of the query results for trading off popularity for diversity in the result
sets of keyword queries on RDF data graph. Diversification of pattern graphs
addresses the scalability problem of keyword search approaches on large data
graphs and also allows diversifying the interpretations of the keyword query. We
introduced metrics to assess the relevance of a pattern graph and the semantic
distance between patterns graphs. We also designed a greedy heuristic algorithm
which maximizes an objective function on pattern graph sets balancing popular-
ity and diversity. Our extensive experimental results show the feasibility of our
approach in terms of the efficiency and the effectiveness of the algorithm.

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results.
In: WSDM, pp. 5–14. ACM (2009)

2. Aksoy, C., Dass, A., Theodoratos, D., Wu, X.: Diversification of keyword
query result patterns. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.)
WAIM 2016. LNCS, vol. 9659, pp. 171–183. Springer, Cham (2016). doi:10.1007/
978-3-319-39958-4 14

3. Bikakis, N., Giannopoulos, G., Liagouris, J., Skoutas, D., Dalamagas, T., Sel-
lis, T.: RDivF: diversifying keyword search on RDF graphs. In: Aalberg, T.,
Papatheodorou, C., Dobreva, M., Tsakonas, G., Farrugia, C.J. (eds.) TPDL
2013. LNCS, vol. 8092, pp. 413–416. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40501-3 49

4. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reorder-
ing documents and producing summaries. In: SIGIR, pp. 335–336 (1998)

5. Carterette, B.: An analysis of NP-completeness in novelty and diversity ranking.
Inf. Retrieval 14(1), 89–106 (2011)

6. Chen, H., Karger, D.R.: Less is more: probabilistic models for retrieving fewer
relevant documents. In: SIGIR, pp. 429–436. ACM (2006)

http://dx.doi.org/10.1007/978-3-319-39958-4_14
http://dx.doi.org/10.1007/978-3-319-39958-4_14
http://dx.doi.org/10.1007/978-3-642-40501-3_49
http://dx.doi.org/10.1007/978-3-642-40501-3_49

170 A. Dass and D. Theodoratos

7. Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D.: Exploiting semantic result
clustering to support keyword search on linked data. In: Benatallah, B., Bestavros,
A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8786,
pp. 448–463. Springer, Cham (2014). doi:10.1007/978-3-319-11749-2 34

8. Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D.: Keyword pattern graph relax-
ation for selective result space expansion on linked data. In: Cimiano, P., Frasincar,
F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 287–306.
Springer, Cham (2015). doi:10.1007/978-3-319-19890-3 19

9. Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D., Wu, X.: Diversifying the
results of keyword queries on linked data. In: Cellary, W., Mokbel, M.F., Wang, J.,
Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 199–207.
Springer, Cham (2016). doi:10.1007/978-3-319-48740-3 14

10. Dass, A., Dimitriou, A., Aksoy, C., Theodoratos, D.: Incorporating Cohesiveness
into keyword search on linked data. In: Wang, J., Cellary, W., Wang, D., Wang,
H., Chen, S.-C., Li, T., Zhang, Y. (eds.) WISE 2015. LNCS, vol. 9419, pp. 47–62.
Springer, Cham (2015). doi:10.1007/978-3-319-26187-4 4

11. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: DivQ: diversification for key-
word search over structured databases. In: SIGIR, pp. 331–338. ACM (2010)

12. Drosou, M., Pitoura, E.: Search result diversification. ACM SIGMOD Rec. 39(1),
41–47 (2010)

13. Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching RDF graphs
with SPARQL and keywords. IEEE Data Eng. Bull. 33(1), 16–24 (2010)

14. Gollapudi, S., Sharma, A.: An axiomatic approach for result diversification. In:
WWW, pp. 381–390. ACM (2009)

15. Hasan, M., Mueen, A., Tsotras, V., Keogh, E.: Diversifying query results on semi-
structured data. In: CIKM, pp. 2099–2103. ACM (2012)

16. Li, G., et al.: Ease: an effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In: SIGMOD, pp. 903–914 (2008)

17. Li, J., Liu, C., Yu, J.X.: Context-based diversification for keyword queries over
XML data. Proc. KDE 27(3), 660–672 (2015)

18. Radlinski, F., Dumais, S.: Improving personalized web search using result diversi-
fication. In: SIGIR, pp. 691–692. ACM (2006)

19. Ruotsalo, T., Frosterus, M.: Semantic entity search diversification. In: ICSC, pp.
32–39 (2013)

20. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candi-
dates for efficient keyword search on graph-shaped (RDF) data. In: ICDE (2009)

21. Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommen-
dation lists. In Recommender Systems, pp. 123–130 (2008)

22. Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommenda-
tion lists through topic diversification. In: WWW, pp. 22–32. ACM (2005)

http://dx.doi.org/10.1007/978-3-319-11749-2_34
http://dx.doi.org/10.1007/978-3-319-19890-3_19
http://dx.doi.org/10.1007/978-3-319-48740-3_14
http://dx.doi.org/10.1007/978-3-319-26187-4_4

	Trading Off Popularity for Diversity in the Results Sets of Keyword Queries on Linked Data
	1 Introduction
	2 Data Model and Pattern Graph Computation
	3 Balancing Relevance and Diversity
	3.1 Problem Statement
	3.2 Assessing the Relevance of a Pattern Graph
	3.3 Assessing the Semantic Distance Between Two Pattern Graphs

	4 Algorithm
	5 Experimental Results
	5.1 Datasets and Queries
	5.2 Effectiveness Results
	5.3 Quality of the Approximation by the HeuRistic Algorithm
	5.4 Efficiency Results

	6 Related Work
	7 Conclusion
	References

