Skip to main content

Sugarcane Genomics and Transcriptomics

  • Chapter
  • First Online:
Sugarcane Biotechnology: Challenges and Prospects

Abstract

Sugarcane is an important commercial crop belonging to Poaceae family and is a major source of sucrose and ethanol production worldwide. Sugarcane’s large genome size, aneuploidy of commercial cultivars, and polyploidy of interspecific hybrids have always imposed a challenge for generation of genomic and transcriptomics resources for crop improvement. Despite of these hurdles, linkage maps based on different segregating populations has been constructed. Efforts to map QTLs controlling various traits are being carried out and map-based cloning has also been tried. Available EST data can now be used for SNP mining, expression profiling, discovering new genes, etc. The comparative analysis of sugarcane and sorghum genome revealed high similarity between the two genomes. This information will further expedite sugarcane improvement initiatives. The advent of high-throughput sequencing technologies such as Roche/454 and Illumina/Solexa is being used to gain knowledge on transcriptome of the cell under different stress conditions. RNA-seq can provide the sequences of all RNA molecules, including mRNA, rRNA, tRNA, and noncoding RNAs, produced in one or a population of cells. The data generated can be used to measure transcript levels, to find novel genes, fusion transcript, and splice junctions. Knowledge of the sugarcane transcriptome can provide information about synthesis of various biomolecules and their interactions with other metabolic pathways in the complex sugarcane genome. Both genomic and transcriptome resources of sugarcane are immensely important for improving yield as well as quality of sugarcane; this will help sugarcane farming community to a great extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Canilha L, Chandel AK, Suzane dos Santos Milessi T, Antunes FA, Luiz da Costa Freitas W, das Graças Almeida Felipe M, da Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. BioMed Research International. 2012.

    Google Scholar 

  • Canilha L, Rodrigues RC, Antunes FA, Chandel AK, Milessi T, Felipe MD, Silva SS. (2013) Bioconversion of hemicellulose from sugarcane biomass into sustainable products. Sustainable degradation of lignocellulosic biomass-Techniques, applications and commercialization,15-45.

    Google Scholar 

  • Casu RE, Rae AL, Nielsen JM, Perroux JM, Bonnett GD, Manners JM (2015) Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families. Plant molecular biology. 89(6):607-28.

    Google Scholar 

  • Chang D, Yang FY, Yan JJ, Wu YQ, Bai SQ, Liang XZ, Zhang YW, Gan YM (2012) SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum, from Sichuan, China. Genetics and Molecular Research. 11(2):1245-53.

    Google Scholar 

  • D'Hont A, Lu YH, Feldmann P, Glaszmann JC. (1993) Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane (United Kingdom).

    Google Scholar 

  • D'hont A, Paulet F, Glaszmann JC.(2002) Oligoclonal interspecific origin of ‘North Indian’and ‘Chinese’sugarcanes. Chromosome Research.10(3):253-62.

    Google Scholar 

  • D'Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC. (1995) Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theoretical and Applied Genetics. 91(2):320-6.

    Google Scholar 

  • Silva JA, Sorrells ME, Burnquist WL, Tanksley SD(1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome. 36(4):782-91.

    Google Scholar 

  • Dal-Bianco M, Carneiro MS, Hotta CT, Chapola RG, Hoffmann HP, Garcia AA, Souza GM. (2012) Sugarcane improvement: how far can we go?. Current opinion in biotechnology 23(2):265-70.

    Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D'Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’.Theoretical and Applied Genetics. 92(8):1059-64.

    Google Scholar 

  • Furtado A, Lupoi JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ (2014) Modifying plants for biofuel and biomaterial production. Plant biotechnology journal. 12(9):1246-58.

    Google Scholar 

  • Garcia AA, Kido EA, Meza AN, Souza HM, Pinto LR, Pastina MM, Leite CS, Da Silva JA, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theoretical and Applied Genetics. 112(2):298-314.

    Google Scholar 

  • Grivet L, D'Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics.142(3):987-1000.

    Google Scholar 

  • Guimarães CT, Honeycutt RJ, Sills GR, Sobral BW (1999) Genetic maps of Saccharum officinarum L. and Saccharum robustum Brandes & Jew. ex grassl. Genetics and Molecular Biology. 22(1):125-32.

    Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theoretical and Applied Genetics. 103(1):84-97.

    Google Scholar 

  • Hotta CT, Lembke CG, Domingues DS, Ochoa EA, Cruz GM, Melotto-Passarin DM, Marconi TG, Santos MO, Mollinari M, Margarido GR, Crivellari AC (2010) The biotechnology roadmap for sugarcane improvement. Tropical Plant Biology. 3(2):75-87.

    Google Scholar 

  • Huang DL, Gao YJ, Gui YY, Chen ZL, Qin CX, Wang M, Liao Q, Yang LT, Li YR (2016) Transcriptome of High-Sucrose Sugarcane Variety GT35. Sugar Tech. 18(5):520-8.

    Google Scholar 

  • Jing YF, Tao LA, Liu XL, An RD, Chen XK (2009) Use of simple sequence repeats for authentication of sugarcane hybrids generated from Yunnan Erianthus rockii. Sugar Tech. 11(3):296-9.

    Google Scholar 

  • Jordan DR, Casu RE, Besse P, Carroll BC, Berding N, McIntyre CL (2004) Markers associated with stalk number and suckering in sugarcane colocate with tillering and rhizomatousness QTLs in sorghum. Genome. 47(5):988-93.

    Google Scholar 

  • Kido EA, Ferreira Neto JR, Silva RL, Pandolfi V, Guimaraes AC, Veiga DT, Chabregas SM, Crovella S, Benko-Iseppon AM (2012) New insights in the sugarcane transcriptome responding to drought stress as revealed by supersage. The Scientific World Journal,2012.

    Google Scholar 

  • Lu YH, D'Hont A, Walker DI, Rao PS, Feldmann P, Glaszmann JC(1994) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica.78(1):7-18.

    Google Scholar 

  • Ming R, Wang Y, Draye X, Moore P, Irvine J, Paterson A (2002b)Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. TAG Theoretical and Applied Genetics.105(2):332-45.

    Google Scholar 

  • Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002c) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome. 45(5):794-803.

    Google Scholar 

  • Ming R, Liu SC, Bowers JE, Moore PH, Irvine JE, Paterson AH (2002a) Construction of a consensus genetic map from two interspecific crosses. Crop Science. 42(2):570-83.

    Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Research. 11(12):2075-84.

    Google Scholar 

  • Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ(1996) A RAPD genetic map of Saccharum officinarum. Crop Science. 36(5):1362-6.

    Google Scholar 

  • Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN (2002) Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica. 127(2):219-25.

    Google Scholar 

  • Park JW, Benatti TR, Marconi T, Yu Q, Solis-Gracia N, Mora V, da Silva JA (2015) Cold responsive gene expression profiling of sugarcane and Saccharum spontaneum with functional analysis of a cold inducible Saccharum homolog of NOD26-like intrinsic protein to salt and water stress. PloS one. 10(5):e0125810.

    Google Scholar 

  • Pinto LR, Garcia AA, Pastina MM, Teixeira LH, Bressiani JA, Ulian EC, Bidoia MA, Souza AP. (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica. 172(3):313-27.

    Google Scholar 

  • Raboin LM, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D‘Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theoretical and Applied Genetics. 112(7):1382-91.

    Google Scholar 

  • Racedo J, Gutiérrez L, Perera MF, Ostengo S, Pardo EM, Cuenya MI, Welin B, Castagnaro AP (2016) Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biology.16(1):142.

    Google Scholar 

  • Santa Brigida AB, Rojas CA, Grativol C, de Armas EM, Entenza JO, Thiebaut F, Lima MD, Farrinelli L, Hemerly AS, Lifschitz S, Ferreira PC (2016) Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp. avenae. PloS one. 11(12):e0166473.

    Google Scholar 

  • Sills GR, Bridges W, Al-Janabi SM, Sobral BW (1995) Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. ex Grassl). Molecular Breeding.1(4):355-63.

    Google Scholar 

  • Singh RK, Singh SP, Tiwari DK, Srivastava S, Singh SB, Sharma ML, Singh R, Mohapatra T, Singh NK (2013) Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane. Euphytica. 191(3):333-53.

    Google Scholar 

  • Sobral BW, Braga DP, LaHood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Theoretical and Applied Genetics.87(7):843-53.

    Google Scholar 

  • Su Y, Xu L, Wang S, Wang Z, Yang Y, Chen Y, Que Y (2015 ) Identification, phylogeny, and transcript of chitinase family genes in sugarcane. Scientific reports,5.

    Google Scholar 

  • Takahashi S, Furukawa T, Asano T, Terajima Y, Shimada H, Sugimoto A, Kadowaki K(2005) Very close relationship of the chloroplast genomes among Saccharum species. Theoretical and Applied Genetics.110(8):1523-9.

    Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, Henrique-Silva F, Giglioti ÉA, Lemos MV, Coutinho LL, Nobrega MP (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome research. 13(12):2725-35.

    Google Scholar 

  • Vicentini R, Bottcher A, dos Santos Brito M, dos Santos AB, Creste S, de Andrade Landell MG, Cesarino I, Mazzafera P (2015) Large-scale transcriptome analysis of two sugarcane genotypes contrasting for lignin content. PloS one. 10(8):e0134909.

    Google Scholar 

  • Zeng Q, Ling Q, Fan L, Li Y, Hu F, Chen J, Huang Z, Deng H, Li Q, Qi Y (2015) Transcriptome profiling of sugarcane roots in response to low potassium stress. PloS one. 10(5):e0126306.

    Google Scholar 

  • Zhu JR, Zhou H, Pan YB, Lu X (2014 )Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp.) and its wild progenitor species Saccharum spontaneum L. Genetics and Molecular Research. 13(2):3037-47.

    Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110(5):789–801

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, Li JC, Jackson P, Piperidis G, McIntyre CL (2006a) AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Aust J Agr Res 57(11):1167–1184

    Google Scholar 

  • Aitken K and McNeil M (2010) “Diversity analysis,” in Genetics, Genomics and Breeding of Sugarcane, eds Henry R., Kole C., editors. (Enfield, NH: Science Publishers; ), 19–42.

    Google Scholar 

  • Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA Genetic control of yield related stalk traits in sugarcane (2008).Theoretical and Applied Genetics 117(7):1191-203.

    Google Scholar 

  • Alwala S, Kimbeng CA, Gravois K A ,Bischoff KP (2006) TRAP, a new tool for sugarcane breeding: comparison with AFLP and coefficient of parentage. Journal American Society Sugar Cane Technologists 26, 62-86.

    Google Scholar 

  • Andru S, Pan YB, Thongthawee S, Burner DM, Kimbeng CA Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers(2011). Theoretical and Applied Genetics 123(1):77-93.

    Google Scholar 

  • Bottino MC, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PC. (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PloS one 8(3):e59423.

    Google Scholar 

  • Cardoso-Silva CB, Costa EA, Mancini MC, Balsalobre TW, Canesin LE, Pinto LR, Carneiro MS, Garcia AA, de Souza AP, Vicentini R (2014) De novo assembly and transcriptome analysis of contrasting sugarcane varieties. PloS one 9(2):e88462.

    Google Scholar 

  • Casu RE, Dimmock CM, Chapman SC, Grof CP, McIntyre CL, Bonnett GD, Manners JM. (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant molecular biology 54(4):503-17.

    Google Scholar 

  • Cordeiro GM , Casu R, McIntyre CL, Manners JM, and Henry RJ(2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and sorghum. Plant Sci 160: 1115-1123.

    Google Scholar 

  • De Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GM, Del Bem LE, Vicentini R, Nogueira FT, Campos RA, Nunes SL, Turrini PC, Vieira AP (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC genomics 15(1):540.

    Google Scholar 

  • Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ (2015) Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Frontiers in bioengineering andbiotechnology 3.

    Google Scholar 

  • Huckett BI and Botha FC(1995) Stability and potential use of RAPD markers in a sugarcane genealogy. Euphytica 86.2 : 117-125.

    Google Scholar 

  • Jenkin MJ, Reader SM, Purdie KA, Miller TE (1995) Detection of rDNA sites in sugarcane by FISH. Chromosome Research 3(7), 444-445.

    Google Scholar 

  • Li M, Liang Z, Zeng Y, Jing Y, Wu K, Liang J, He S, Wang G, Mo Z, Tan F, Li S. (2016) De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (Saccharum officinarum L.). BMC genomics 17(1):195.

    Google Scholar 

  • Ming R, Liu SC, Lin YR, Da Silva J, Wilson W, Braga D, Van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150(4):1663-82.

    Google Scholar 

  • Nayak SN, Song J, Villa A, Pathak B, Ayala-Silva T, Yang X, Todd J, Glynn NC, Kuhn DN, Glaz B, Gilbert RA (2014) Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PloS one 9(10):e110856.

    Google Scholar 

  • Okura V, da Silva FR, da Silva MJ, Kudrna D, Ammiraju JS, Talag J, Wing R, Arruda P (2012) A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genome. BMC research notes 5(1):185.

    Google Scholar 

  • Que Y, Chen T, Xu L, Chen R (2009) Genetic diversity among key sugarcane clones revealed by TRAP markers. Journal of Agricultural Biotechnology 17(3), 496-503.

    Google Scholar 

  • Taniguti LM, Schaker PD, Benevenuto J, Peters LP, Carvalho G, Palhares A, Quecine MC, Nunes FR, Kmit MC, Wai A, Hausner G (2015) Complete genome sequence of Sporisorium scitamineum and biotrophic interaction transcriptome with sugarcane. PloS one. 10(6):e0129318.

    Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2006b) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet 112(7):1306–1317

    Article  CAS  PubMed  Google Scholar 

  • Aitken KS, McNeil MD, Hermann S, Bundock PC, Kilian A, Heller-Uszynska K, Henry RJ, Li J (2014) A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput diversity Array technology (DArT) markers. BMC Genomics 15(1):152

    Article  PubMed  PubMed Central  Google Scholar 

  • Alix K, Baurens FC, Paulet F, Glaszmann JC, D’hont A (1998) Isolation and characterization of a satellite DNA family in the Saccharum Complex. Genome 41(6):854–864

    Article  CAS  PubMed  Google Scholar 

  • Alix K, Paulet F, Glaszmann JC, D’Hont A (1999) Inter-Alu-like species-specific sequences in the Saccharum complex. Theor Appl Genet 99(6):962–968

    Article  CAS  Google Scholar 

  • Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BW (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134(4):1249–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arruda P (2012) Genetically modified sugarcane for bioenergy generation. Curr Opin Biotechnol 23(3):315–322

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki KI (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11(2):93–99

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35:D760–D765

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH (2008) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 1(37):D885–D890

    Google Scholar 

  • Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210

    Chapter  Google Scholar 

  • Berkman PJ, Bundock PC, Casu RE, Henry RJ, Rae AL, Aitken KS (2014) A survey sequence comparison of Saccharum genotypes reveals allelic diversity differences. Tropical Plant Biol 7(2):71–83

    Article  Google Scholar 

  • Besse P, McIntyre CL, Berding N (1997) Characterisation of Erianthus sect. Ripidium and Saccharum germplasm (Andropogoneae-Saccharinae) using RFLP markers. Euphytica 93(3):283–292

    Article  CAS  Google Scholar 

  • Bower NI, Casu RE, Maclean DJ, Reverter A, Chapman SC, Manners JM (2005) Transcriptional response of sugarcane roots to methyl jasmonate. Plant Sci 168(3):761–772

    Article  CAS  Google Scholar 

  • Brady SM, Long TA, Benfey PN (2006) Unravelling the dynamic transcriptome. Plant Cell 18:2101–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bremer G (1923) A cytological investigation of some species and species-hybrids of the genus Saccharum. Genetica 5:273–326

    Article  Google Scholar 

  • Bremer G (1961) Problems in breeding and cytology of sugarcane. Euphytics 10:59–78

    Article  Google Scholar 

  • Calsa JT et al (2004) Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 46(6):366–373

    Article  Google Scholar 

  • Camargo SR, Cançado GM, Ulian EC, Menossi M (2007) Identification of genes responsive to the application of ethanol on sugarcane leaves. Plant Cell Rep 26(12):2119–2128

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC (1996) Structural and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  PubMed  Google Scholar 

  • Carson DL, Huckett BI, Botha FC, van Staden J (2002) Differential gene expression in sugarcane leaf and internodal tissues of varying maturity. S Afr J Bot 68(4):434–442

    Article  CAS  Google Scholar 

  • Casu RE, Grof CPL, Rae AL, McINtyre CL, Dimmock CM, Manners JM (2003) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  CAS  PubMed  Google Scholar 

  • Casu RE, Jarmey JM, Bonnett GD, Manners JM (2007) Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics 7(2):153–167

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A (2005) Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Ra S, Berding N, Glaszmann JC (1996) Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  Google Scholar 

  • Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Erik Mirkov T (2010) Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231:1439–1458

    Article  CAS  PubMed  Google Scholar 

  • De Souza AP, Gaspar M, Da Silva EA, Ulian EC, Waclawovsky AJ, Dos santos RV, Teixeira MM, Souza GM, Buckeridge MS (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31(8):1116–1127

    Article  PubMed  Google Scholar 

  • Dharshini S, Chakravarthi M, Manoj VM, Naveenarani M, Kumar R, Meena M, Ram B, Appunu C (2016) De novo sequencing and transcriptome analysis of a low temperature tolerant Saccharum spontaneum clone IND 00-1037. J Biotechnol 231:280–294

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos PB, Soares-Cavalcanti NM, Vieira-de-Melo GS, Benko-Iseppon AM (2011) Osmoprotectants in the sugarcane (Saccharum spp.) transcriptome revealed by in silico evaluation. Comput Intel Meth Bioinfo Biostat 6685:44–58

    Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira SS, Hotta CT, de Carli Poelking VG, Leite DC, Buckeridge MS, Loureiro ME, Barbosa MH, Carneiro MS, Souza GM (2016) Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. Plant Mol Biol 2:15–35

    Article  Google Scholar 

  • Galbraith DW (2006) DNA microarray analyses in higher plants. OMICS 10:455–473

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes CT, Sills GR, Sobral BWS (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci 94(26):14261–14266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K (1999) Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol Biol 39:1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262. doi:10.1111/j.1467-7652.2009.00481.x

    Article  CAS  PubMed  Google Scholar 

  • Henry RJ (2010) Plant resources for food, fuel and conservation. Eartscan, London

    Google Scholar 

  • Higuchi T (1981) In: Tanner W, Loewus F (eds) Biosythesis of lignin in plant carbohydrates II. Springer, Berlin, pp 194–224

    Chapter  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1198. doi:10.1104/pp.119.4.1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076. doi:10.1111/j.1467-7652.2012.00734.x

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V (2004) MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res 32:D393–D397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Ma HM, Schulze S, Lee S, Yang M, Mirkov E, Irvine J, Moore P, Paterson A (2004) An EST survey of the sugarcane transcriptome. Theor Appl Genet 108:851–863

    Article  PubMed  Google Scholar 

  • Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugarcane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 5:22. doi:10.1186/1754-6834-5-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Manners JM, Casu RE (2011) Transcriptome analysis and functional genomics of sugarcane. Trop Plant Biol 4:9–21

    Article  CAS  Google Scholar 

  • de Maria Felix J, Papini-Terzi FS, Rocha FR, Vêncio RZ, Vicentini R, Nishiyama MY, Ulian EC, Souza GM, Menossi M (2009) Expression profile of signal transduction components in a sugarcane population segregating for sugar content. Trop Plant Biol 2:98–109

    Article  Google Scholar 

  • Pippo WA, Luengo CA, Alberteris LA, Garzone P, Cornacchia G (2011) Energy recovery from sugarcane-trash in the light of 2nd generation biofuels. Part 1: current situation and environmental aspects. Waste Biomass Valorization 2(1):1–6

    Article  Google Scholar 

  • Nogueira FT, De Rosa VE, Menossi M, Ulian EC, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132(4):1811–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oloriz MI, Gil V, Rojas L, Portal O, Izquierdo Y, Jimenez E, Hofte M (2012) Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling. Plant Cell Rep 31(5):955–969

    Article  CAS  PubMed  Google Scholar 

  • Panje R, Babu C (1960) Studies in Saccharum spontaneum distribution and geographical association of chromosome numbers. Cytologia 25:152–172

    Article  Google Scholar 

  • Papini-Terzi FS, Rocha FR, Vêncio RZ, Oliveira KC, de Maria Felix J, Vicentini R, de Souza Rocha C, Simoes AC, Ulian EC, di Mauro SM, Da Silva AM (2005) Transcription profiling of signal transduction-related genes in sugarcane tissues. DNA Res 12(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2012) Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Mol Biol Rep 39:3311–3318

    Article  CAS  PubMed  Google Scholar 

  • Piperidis G, D’Hont A (2001) Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridization (GISH). Proc Int Soc Sugar Cane Technol 11:565–566

    Google Scholar 

  • Piperidis N, Chen JW, Deng HH, Wang LP, Jackson P, Piperidis G (2010) GISH characterization of Erianthus Arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome 53(5):331–336

    Article  CAS  PubMed  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugar cane. Econ Bot 17:97–106

    Article  Google Scholar 

  • Price S (1965) Interspecific hybridization in sugarcane breeding. Proc Int Soc Sugar Cane Technol 12:1021–1026

    Google Scholar 

  • Ruiz M, Rouard M, Raboin LM, Lartaud M, Lagoda P, Courtois B (2004) TropGENE-DB, a multi-tropical crop information system. Nucleic Acids Res 32:D364–D367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saathoff A, Sarath G, Chow E, Dien B, Tobias C (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulose treatment. PLoS One 6:e16416. doi:10.1371/journal.pone.0016416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Hochholdinger F, Nakazono M (2004) Global expression profiling applied to plant deveopmet. Curr Opin Plant Biol 7:50–56

    Article  CAS  PubMed  Google Scholar 

  • Seabra JEA, Tao L, Chum HL, Macedo IC (2010) A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass Bioenergy 34:1065–1078. doi:10.1016/j.biombioe.2010.01.042

    Article  CAS  Google Scholar 

  • Souza A, Leite DC, Pattathil S, Hahn M, Buckeridge M (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579

    Article  CAS  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253

    Chapter  Google Scholar 

  • Sternes PR, Moyle RL (2015) Deep sequencing reveals divergent expression patterns within the small RNA transcriptomes of cultured and vegetative tissues of sugarcane. Plant Mol Biol Report 33(4):931–951

    Article  CAS  Google Scholar 

  • Takahashi S, Furukawa T, Asano T et al (2005) Very close relationship of the chloroplast genomes among Saccharum species. Theor Appl Genet 110:1523–1529

    Article  CAS  PubMed  Google Scholar 

  • Tew T, Cobill R (2008) In: Vermerris W (ed) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop in Genetic Improvement of Bioenergy Crops. Springer, New York, pp 273–294

    Chapter  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7

    Article  CAS  Google Scholar 

  • Virupakshi S, Naik GR (2008) ISSR analysis of chloroplast and mitochondrial genome can indicate the diversity in sugarcane genotypes for red rot resistance. Sugar Tech 10(1):65–70

    Article  CAS  Google Scholar 

  • Whetten R, Ron S (1995) Lignin biosynthesis. Plant Cell 7:1001–1013. doi:10.2307/3870053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Xu L, Guo J, Su Y, Que Y (2013) Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology. Biomed Res Int 2013:1

    Google Scholar 

  • Zhou X, Su Z (2007) Easy GO: Gene ontology-based annotation and functional enrichment analysis tool for agronomical species. BMC Genomics 8:246

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Appunu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaur, L., Dharshini, S., Ram, B., Appunu, C. (2017). Sugarcane Genomics and Transcriptomics. In: Mohan, C. (eds) Sugarcane Biotechnology: Challenges and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-319-58946-6_2

Download citation

Publish with us

Policies and ethics