Image Contrast Measure as a Gloss Material Descriptor

  • Jean-Baptiste Thomas
  • Jon Yngve Hardeberg
  • Gabriele Simone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10213)

Abstract

Bidirectional reflectance distribution function provides a physical description of material appearance. In particular, it helps to describe the gloss. We suggest that, at least, one attribute of gloss: Contrast gloss (luster), may be described directly from an image by using local image contrast measurement. In this article, we investigate the relation between image contrast measures, gloss perception and bidirectional reflectance distribution function based on the Ward’s \(\alpha \) model parameter. Although more investigation is required to provide stronger conclusions, it seems that image related contrast measures may provide an indication of gloss perception.

Keywords

Gloss perception Contrast measurement Gloss descriptor Contrast gloss 

References

  1. 1.
    Hunter, R.S., Harold, R.W.: The measurement of appearance (1987)Google Scholar
  2. 2.
    CIE. TC 175:2006, a framework for the measurement of visual appearance (2006)Google Scholar
  3. 3.
    van Assen, J.J.R., Wijntjes, M.W.A., Pont, S.C.: Highlight shapes and perception of gloss for real and photographed objects. J. Vis. 16(6), 6 (2016)Google Scholar
  4. 4.
    Hunter, R.S.: Methods of determining gloss. J. Res. National Bureau Stan. 18, 19–39 (1937)CrossRefGoogle Scholar
  5. 5.
    Leloup, F.B., Obein, G., Pointer, M.R., Hanselaer, P.: Toward the soft metrology of surface gloss: a review. Color Res. Appl. 39(6), 559–570 (2014)CrossRefGoogle Scholar
  6. 6.
    Chadwick, A.C., Kentridge, R.W.: The perception of gloss: a review. Vis. Res. 109(Pt. B), 221–235 (2015). Perception of Material Properties (Part I)Google Scholar
  7. 7.
    Pedersen, M., Bonnier, N., Hardeberg, J.Y., Albregtsen, F.: Attributes of image quality for color prints. J. Electron. Imaging 19(1), 011016-1–011016-13 (2010)Google Scholar
  8. 8.
    Valberg, A.: Light Vision Color. John Wiley & Sons, Chichester (2007)Google Scholar
  9. 9.
    Peres, M.R.: Focal Encyclopedia of Photography: Digital Imaging, Theory and Applications, History, and Science, 4th edn. Focal Press, Amsterdam (2007)Google Scholar
  10. 10.
    Michelson, A.: Studies in Optics. University of Chicago Press, Chicago (1927)MATHGoogle Scholar
  11. 11.
    Burkhardt, D.A., Gottesman, J., Kersten, D., Legge, G.E.: Symmetry and constancy in the perception of negative and positive luminance contrast. J. Opt. Soc. Am. A 1(3), 309–316 (1984)CrossRefGoogle Scholar
  12. 12.
    Whittle, P.: Increments and decrements: luminance discrimination. Vision. Res. 26(10), 1677–1691 (1986)CrossRefGoogle Scholar
  13. 13.
    King-Smith, P.E., Kulikowski, J.J.: Pattern and flicker detection analysed by subthreshold summation. J. Physiol. 249(3), 519–548 (1975)CrossRefGoogle Scholar
  14. 14.
    Hess, R.F., Bradley, A., Piotrowski, L.: Contrast-coding in amblyopia i. differences in the neural basis of human amblyopia. Proc. R. Soc. Lond. B Biol. Sci. 217(1208), 309–330 (1983)Google Scholar
  15. 15.
    Peli, E.: Contrast in complex images. J. Opt. Soc. Am. A 7(10), 2032–2040 (1990)CrossRefGoogle Scholar
  16. 16.
    McCann, J.J., Rizzi, A.: The Art and Science of HDR Imaging. John Wiley & Sons, New York (2012)Google Scholar
  17. 17.
    Frankle, J., McCann, J.J.: Method and apparatus for lightness imaging, patent US 4384336 a, May 1983Google Scholar
  18. 18.
    Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(6), 33–41 (1984)Google Scholar
  19. 19.
    Lubin, J.: A visual discrimination model for imaging system design and evaluation. In: Visual Models for Target Detection and Recognition, chap. 10, pp. 245–283. World Scientific Publishers, River Edge (1995)Google Scholar
  20. 20.
    Iordache, R., Beghdadi, A., Viaris de Lesegno, P.: Pyramidal perceptual filtering using Moon and Spencer contrast. In: Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), vol. 3, pp. 146–149 (2001)Google Scholar
  21. 21.
    Rizzi, A., Algeri, T., Medeghini, G., Marini, D.: A proposal for contrast measure in digital images. In: CGIV 2004 2nd European Conference on Color in Graphics, Imaging and Vision. IS&T Proceedings, Aachen, Germany, April 2004Google Scholar
  22. 22.
    Tadmor, Y., Tolhurst, D.J.: Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes. Vision. Res. 40(22), 3145–3157 (2000)CrossRefGoogle Scholar
  23. 23.
    Boccignone, G., Ferraro, M., Caelli, T.: Encoding visual information using anisotropic transformations. IEEE Trans. Pattern Anal. Mach. Intell 23(2), 207–211 (2001)CrossRefMATHGoogle Scholar
  24. 24.
    Ferraro, M., Boccignone, G.: Image contrast enhancement via entropy production. Real-Time Imaging 10(4), 229–238 (2004)CrossRefGoogle Scholar
  25. 25.
    Simone, G., Pedersen, M., Hardeberg, J.Y.: Measuring perceptual contrast in digital images. J. Vis. Commun. Image Represent. 23(3), 491–506 (2012)CrossRefGoogle Scholar
  26. 26.
    Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26(2), 265–272 (1992)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Serrano, A., Gutierrez, D., Myszkowski, K., Seidel, H.-P., Masia, B.: An intuitive control space for material appearance. ACM Trans. Graph. 35(6), 186:1–186:12 (2016)Google Scholar
  28. 28.
    Pedersen, M., Rizzi, A., Hardeberg, J.Y., Simone, G.: Evaluation of contrast measures in relation to observers perceived contrast. In: CGIV 2008 4th European Conference on Color in Graphics, Imaging and Vision. IS&T Proceedings, Terrassa, Spain, pp. 253–256, June 2008Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jean-Baptiste Thomas
    • 1
  • Jon Yngve Hardeberg
    • 1
  • Gabriele Simone
    • 2
  1. 1.The Norwegian Colour and Visual Computing Laboratory, NTNUThe Norwegian University of Science and TechnologyGjøvikNorway
  2. 2.MIPS Lab, Department of Computer ScienceUniversita degli Studi di MilanoMilanoItaly

Personalised recommendations