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Abstract. Bidirectional reflectance distribution function provides a
physical description of material appearance. In particular, it helps to
describe the gloss. We suggest that, at least, one attribute of gloss: Con-
trast gloss (luster), may be described directly from an image by using
local image contrast measurement. In this article, we investigate the rela-
tion between image contrast measures, gloss perception and bidirectional
reflectance distribution function based on the Ward’s α model parameter.
Although more investigation is required to provide stronger conclusions,
it seems that image related contrast measures may provide an indication
of gloss perception.

Keywords: Gloss perception · Contrast measurement · Gloss descrip-
tor · Contrast gloss

1 Introduction

Total appearance of an object is described by its color, its gloss, its translucency
and its texture, according to Hunter [1] and a subsequent CIE technical report on
total appearance [2]. Within this context, the gloss of the material gives numer-
ous cues about the object: It helps to understand in particular the structure of
the illumination (e.g. spectral distribution as cue for color constancy, direction
of light for scene understanding and also geometric properties that may help to
assess invisible parts of the scene) and provide information on object properties
(e.g. 3D shape, size and interaction within the scene). Although it is most proba-
ble that gloss must be combined with other attributes for material identification
and scene understanding, it is, without a doubt, a determining and important
factor [3].

The physical correlate of gloss perception is expressed within the bidirectional
reflectance distribution function (BRDF). Huge progress has been achieved in
the measurement of this correlate during the last decade. However, it is yet not
very well understood how to correlate this measure to appearance perception.
According to Hunter and others, six visual criteria may be necessary to evaluate
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the perception of gloss: Specular gloss, contrast gloss, sheen, absence of bloom
gloss (haze) and distinctness of image gloss [4–6].

Contrast gloss relates to the contrast perceived by the observer between the
specular highlights and the diffuse area related to the same object and illumi-
nation condition. We propose that this edge between diffuse and specular may
be partially representative of the perception of gloss to some extent and would
be an indicator and a descriptor of near to specular area of the material. This
indicator would necessarily be dependant on the size, magnitude and on other
components of the scene. Consequently, we suggest that it could be characterized
by a perceptual local image contrast measure of the specific related area of an
image where specular reflection happens. This measure could be related to the
BRDF measurement of the object and the gloss perceived by the observers.

We first introduce image contrast measurement and select specific a priori
relevant metrics from the state of the art. We then generate simple objects
that exhibit different surface properties. Focus is on roughness of object, which
should significantly influence contrast gloss. We used an isotropic Ward model
for that. In Sect. 4, we describe the visual experiment and categorization we
performed, and in Sect. 5, we relate the physical model, the contrast measure and
the perceptual categories together. Results suggest that some contrast measures
may represent perceived gloss well, when gloss is perceived. However, it is not
yet clear whether it is only contrast gloss that is evaluated, neither how robust
is this indication.

2 Measures of Contrast for Digital Images

Studies have identified contrast as one of the fundamental perceptual attributes
to describe the quality of an image [7]. So far there are still several definitions
of contrast based on the field of research and target application. For example,
in vision, contrast can be defined as the physical differences in luminance and
color, as well as the perception of these differences [8], while in photography,
contrast is typically related to the degree of information visible in the shadow
areas [9].

In a century of contrast studies, different definitions led to development of
different contrast measures. The very first contrast measures referred as global
formulae are based on the highest and the lowest luminance in the scene [10–
12]. Evolution of these measures embed more advanced global image statistics.
In particular interest for this work is the measure proposed by King-Smith and
Kulikowski [13] defined as CKK = Lmax−Lavg

Lavg
, where Lmax is the maximum

luminance of the image and Lavg is the average luminance of the image.
Later studies have shown that perceived contrast can vary across the image

due to different spatial frequencies [14,15] and to the presence of gloss and
glare [16]. As a consequence, in the three last decades contrast measures based
on local description of the image emerged, approaching the problem in various
ways. We recall here a brief selection of them.
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In 1983, Frankle and McCann [17] followed by Adelson et al. [18] proposed to
use multilevel representation as feature to mimic the Human Visual System. The
image is represented by a set of low-pass or band-pass copies, each representing
information at a different scale. From this feature came the pioneering contrast
measure of Peli [15] in 1990. This measure is commonly used in the following as
benchmark of local contrast measurement.

Peli’s local band-limited contrast c of each pixel location (x,y) is defined by
ci(x, y) = ai(x,y)

li(x,y)
, where ai(x, y) is the corresponding local luminance image and

li(x, y) is a low-pass-filtered version of the image containing all energy below the
band i. The contrast image would then be the addition of ci(x, y) of each level.
Then, CP is computed as the average of the contrast image.

An optimization is later proposed by Lubin [19]. Following the multi-level
representation, Iordache et al. [20] and Rizzi et al. [21], respectively, proposed a
local contrast measure based on a weighted 8-neighborhood mask. Tadmor and
Tolhurst [22] proposed a local contrast measure by modifying and adapting the
Difference Of Gaussians (DOG) model from neurophysiological studies. Later
Boccignone and Ferraro [23,24] defined local contrast as a set of thermodynam-
ical variables.

The local contrast measure proposed by Simone et al. [25], named Weighted
Level Framework (WLF), combines and extends Rizzi et al. [21] and Tadmor
and Tolhurst [22] measures. WLF has been shown to have high correlation with
observers perceived contrast and is flexible to work in different color spaces and
with color images. We consider this metric as being a potential good candidate
to represent locally the visual effect of luster.

The WLF measure of contrast for greyscale images is defined by CWLF =
β · C, where β is a scaling factor that is defined according to the image content
and C the final multilevel average contrast of the image. This is defined as
C = 1

Nl

∑Nl

l=1λl ·cl, where Nl is the number of levels, cl is the average contrast at
the level l and λl is the weight assigned to each level l that is defined according
to the image content. Likewise in Rizzi et al. [21] the number of levels of Nl is
image size independent and each level l is created reducing at each operation
the previous level of a factor of 2 starting from the original image size.

At each level l, the contrast c of each pixel location (x,y) is calculated,
using the DOG model proposed by Tadmor and Tolhurst [22] such as c(x, y) =
Rc(x,y)−Rs(x,y)
Rc(x,y)+Rs(x,y)

, where Rc and Rs are the center and surround components,
respectively.

In the DOG model, the center component is described by a bi-dimensional
Gaussian such as Center(x, y) = exp

[
− (x/rc)

2 − (y/rc)
2
]
, where rc is the

radius of the center component. The surround component is represented by
another Gaussian curve, with a larger radius, rs, such as

Surround(x, y) = 0.85 (rc/rs)
2 exp

[
− (x/rs)

2 − (y/rs)
2
]
.
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When the central component is placed at location (x,y), the output is calculated
as Rc(x, y) =

∑i=x+3rc
i=x−3rc

∑j=y+3rc
j=y−3rc

Center(i−x, j −y)I(i, j). When the surround
component is placed at location (x,y), the output is calculated as Rs(x, y) =
∑i=x+3rs

i=x−3rs

∑j=y+3rs
j=y−3rs

Surround(i−x, j−y)I(i, j). In both cases I(i,j) is the image
pixel value at position (i,j ).

The rules of thumb for automatically choosing the various parameters are
presented in Simone et al. [25]. In our experiment, we used two set of parameters
for WLF, referred to as uniform (WLF-U, when rc = 1, rs = 2, λl = 1 and β = 1)
and optimal (WLF-O, when rc = 2, rs = 4, λl = variance of the level l and β =
variance of the image).

3 Experimental Data

We propose to use one basic object, consistent setup and a simple model to
investigate our proposal. We selected achromatic spheres, which surface is char-
acterized by its BRDF defined by an isotropic Wards model [26]. In this sense,
the only difference between these images lies in material properties defined by a
single parameter. Images were generated with the software BRDF Explorer1.

The Ward model for isotropic materials is defined as:

ρisotropic(θi, φi; θr, φr) =
ρd
π

+ ρs
1√

cos θi cos θr

exp(−tan2δ/α2)
4πα2

,

where ρd is the diffuse reflectance, ρs the specular reflectance. δ is the angle
between the surface normal and the half angle between illumination and viewing
angle. Viewing geometry remains the same. We set θi, the incident angle to
45◦. The planar incident angle φi remains also the same at 45◦. That gives the
highlight in the upper right part of the sphere. The illumination remains the
same and the gamma value for the imaging simulation was 2.2.

The only parameter that varies, α, the standard deviation of the surface
slope, corresponds to material coarseness in our case. We vary it from 0 to 1.
ρd and ρs are kept constant and simply set to 1. Also, Ward mentions that α is
meaningful as long as it is not much greater than 0.2, we provide a span of values
from 0 to 1 to investigate the contrast metrics, but perform visual experiments
only on the area where Ward’s model is more likely to represent some physical
reality, arbitrarily between 0.1 and 0.4.

Examples of generated BRDFs are shown in Fig. 3. When α = 0.001, the
sphere is highly specular – we do not use this value after since only one pixel in
the image would be white and it is quite unrealistic, after α = 0.3, the specular
direction does not saturate anymore the virtual sensor, and after 0.5, a more
diffuse behavior is clearly observed. This is exemplified in Fig. 1. Images of the
spheres used in the visual experiment are shown on Fig. 2.

1 https://www.disneyanimation.com/technology/brdf.html.

https://www.disneyanimation.com/technology/brdf.html
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(a) α=0.001 (b) α=0.05

(c) α=0.2 (d) α=0.3

(e) α=0.5 (f) α=1.00

Fig. 3. Isotropic BRDFs considered in this work as instantiations of the Wards model,
based on one parameter α.

4 Visual Experiment

We gathered a committee of experts for ranking and rating the images, 4 persons,
including 2 of the authors, together in a dim room, and the images of spheres
were displayed all at the same time on a screen by a video–projection system.
Notice that the projected background was white, as this may be important in
the following. One of the authors was chairing the discussion and giving a large
degree of freedom to the participants to redesign the experiment and reach an
unanimous decision on each tasks. The participants were able to interact freely
with the images, to move around and to discuss, such that a collective decision
could be made.

The task was first to rank the images of Fig. 2 from glossy to most glossy.
Images were first presented in random order. This was done quite fast by the
committee, the task was relatively easy and the ranking coincided perfectly with
the increasing of the α parameter. There was no disagreement between the com-
mittee members. Since there is only one physical parameter that varies, it is not
surprising that it was easy to rank the samples along a single dimension.



240 J.-B. Thomas et al.

The next task was to rate the images. Through discussion, references of highly
matte and highly specular images were included into the set-up (α = 1.00 and
α = 0.05) to provide potential anchor for the judgment. Even with this addition,
it was not possible to decide of rate values2. However, it was possible to categorize
the images. A scale of seven steps: very matte (VM), matte (M), somewhat matte
(SM), neither glossy or matte (N), somewhat glossy (SG), glossy (G), and very
glossy (VG), was used to classify the images. The only image assumed to be very
matte was the sample that is very close to a perfect diffuser (α = 1). The three
following samples (α = 0.40, 0.38, 0.36) were considered as somewhat matte.
The three next (α = 0.34, 0.32, 0.30) were considered somewhat glossy. The six
next (α = 0.28, 0.26, 0.24, 0.22, 0.20, 0.18) were considered as glossy, and the
remaining, including the other reference (α = 0.16, 0.14, 0.12, 0.10, 0.05), were
considered as very glossy. This is exemplified in the results later in color code
(Fig. 5). No sphere was considered to be “neither glossy or matte”, no sphere
was considered “matte” within the range of our investigation. The scale was
accepted within the context of this experiment, but doubt was emitted on the
existence of an axis going from matte to glossy samples as it appears to be not
perfectly correlated in some studies (e.g. [27]).

No specific questions were asked about contrast gloss/luster, as we consider
α to be only representative of luster thanks to the stability of the scene and no
difference in lighting conditions. This may limit our analysis as α would not only
be the correlate of contrast gloss in more complex situations. However in this
study, especially when α ≤ 0.3, only contrast gloss seems to change, according
to the definition of contrast gloss.

5 Results

One aspect to take into account in our analysis, is that the images with an
α ≤ 0.3 are most likely to contain a saturated pixel, so they would have all the
same dynamic range. In order to identify the presence of a saturated pixel, i.e.
that would represent dynamic range of the scene, we introduce, in addition to
the contrast measures, a saturation index. This index is defined as SI = Lmax

255 ,
since our images are encoded into 8 bits.

Results for this indicator are shown in Fig. 4, i and j. These results are
somewhat surprising in the sense that after that α value goes over 0.5, new
brighter pixels appear at the edge of the sphere, which show then some sheen
effects, i.e. gloss at grazing angles. This is out of the accepted validity of Ward’s
model and shows an aspect of gloss that we do not focus on in this paper, so it
is hard to incorporate or discard these data into the discussion on solid ground.

We separate our analysis in two parts: first, we look at the behavior of the
image contrast measures according to variation of BRDF parameter, and next
we evaluate closely how we can relate that with the visual categorization.
2 It might have been possible to rate by providing either a 50% patch or at least one

example of number, which was not desired by the experimenters because we did not
want to introduce weak priors.
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5.1 Physical Aspects

We analyze the correlation between the Ward parameter α and a set of contrast
measures, in addition to the saturation index just described. We chose the global
image contrast measure proposed by King-Smith and Kulikowski [13] and two
local image contrast measures, Peli [15] and Simone et al. [25] WLF.

The results of the different contrast measures investigated are shown in Fig. 4.
On the right, the full range of samples is investigated, while on the left, only the
oversampled area of visual interest is drawn.

The saturation index shows that no more saturated pixels are present in
the image when α ≥ 0.3. The dynamic range reduces until α ≥ 0.5, and then
increases again until α = 0.7. This shows sheen effect.

A similar behavior is shown by the global measure of contrast King-Smith
and Kulikowski, with more sensitivity to the amount of bright pixels due to the
anchored average normalization. However, the score value drops down regularly
according to evolution of the parameter, and then a change of slope is observed
around α = 0.3.

Peli local contrast measure does not seem to show strong tendency, and
appears to be rather unstable. The curves that appear noisy must be related to
the short range of scores, only approximately between [0.235, 0.255]. Thus, Peli
local contrast measure does not seem to be highly sensitive to the changes of
material properties. Similar conclusion could be pointed out for WLF-U local
contrast measure (when WLF parameters are fixed).

On the contrary, WLF-O local contrast measure (WLF with optimal para-
meters, see Sect. 2) seems to perform a rather good ranking of the images for
0 ≤ α ≤ 0.3. Then for values greater than 0.3, a change in the function occurs,
and it follows a descending behavior.

5.2 Visual Aspects

We incorporate here the observers categorization into the image contrast mea-
sures analysis. We remind to the reader that five images were categorized very
glossy α ≤ 0.16 (Magenta), six glossy 0.18 ≤ α ≤ 0.28 (Green), three somewhat
glossy 0.30 ≤ α ≤ 0.34 (Yellow), three somewhat matte 0.36 ≤ α ≤ 0.40 (light
Blue) and one very matte α = 1 (dark Blue), which color code correspond to
Fig. 5.

As can be seen from Fig. 5(d), about when the saturation index starts to
become lower than 1, meaning that there are no more saturated pixels in the
image, the observers rate samples somewhat glossy. This behavior may be influ-
enced by the white background and some adaptation process, which generates
already a reference for the highest radiance in the visual field. However, this
observation is consistent with other results, and whatever the reason, the metric
indicates a similar trend as the observers: Gloss sensation reduces.

The global measure King-Smith and Kulikowski is shown on Fig. 5(c). In this
case, observers perceived gloss until a similar point where the metric shows an
inflexion. The interesting behavior here is that the values keep on going down
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(a) WLF-O scores for visual test set. (b) WLF-O scores for the all test
set.

(c) WLF-U scores for visual test set. (d) WL-U scores for the all test set.

(e) Peli scores for visual test set. (f) Peli scores for the all test set.

(g) K-S & K scores for visual test
set.

(h) K-S & K scores for the all test
set.

(i) SI scores for visual test set. (j) SI scores for the all test set.

Fig. 4. Contrast metrics results versus Wards parameter α.
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(a) WLF score (b) Peli score

(c) K-S & K score (d) data

Fig. 5. Perceptual categorization ordered in function of contrast measures score and
Wards parameter. Legend stands for very matte (VM, dark blue), somewhat matte
(SM, light blue), somewhat glossy (SG, yellow), glossy (G, green), and very glossy
(VG, magenta). (Color figure online)

until α = 0.5, which provide a potential ranking from very glossy to somewhat
matte. However, after some sheen appears, matte material would show increasing
values.

Peli local image contrast measure seems not following observers categoriza-
tion as the categories exhibit a similar score as shown in Fig. 5(b). It seems
that change in perceived contrast gloss/luster due to the changes in material
properties cannot be adequately predicted in terms of perceived contrast by Peli
measure in this case.

Of particular interest is the behavior of the WLF-O local image contrast
measure. This measure shows a smooth curve, which increases within the range
of gloss perception. When samples are rated somewhat glossy, the curves has
changed its slope and started to decrease, which correlate with the observer
categorizations. This agreement seems to be justified by the optimal parameters,
which are not fixed but retrieved from statistics of the image, where variance
has shown high correlation in terms of perceived contrast [25,28].
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In this study, variance seems to link perception of gloss (potentially specif-
ically luster) with perception of contrast and agree with observers categories.
However, even though we can agree that ranking is possible, we do not have any
clue on rating. On the other hand, the parameter α of the Ward model is not
perceptually uniform. Thus, the behavior of the curve (linear, smooth, etc.) does
not provide any information on perceptual uniformity, which would be one of
the targets of a further work if our general observations are confirmed by further
investigations. Precautions should be taken with these results since the measure
may be only good in fitting the parameter α. Further investigations on whether
the measure continues to fit α rather than the perceived contrast gloss in the
general case is yet to be performed.

6 Conclusion

In this work, we have evaluated image contrast metrics in relation to BRDF
and gloss perception. Two data sets were created with the intention to focus on
contrast gloss/luster driven by a single parameter in this specific case.

Results suggest that WLF-O contrast measure increases when increasing con-
trast gloss, when gloss is perceived. When gloss is not perceived, then the mea-
sure inverses its tendency. This second statement has to be confirmed with an
extension of the experiment.

It is not yet clear if the contrast measure follows the physical parameter or the
perception of contrast gloss in the general case. More investigations are required
in this direction. Further work would be performed with a more sophisticated
model for BRDF and light simulation, which would permit to vary more parame-
ters. The methodology for the visual experiment provides interesting qualitative
results, but does not permit to rate quantitatively gloss perception. To this aim,
more traditional psychometric methodology is required.
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