Skip to main content

Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes

  • Chapter
  • First Online:
Oxygen Transport to Tissue XXXIX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 977))

Abstract

Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Missner A, Pohl P (2009) 110 years of the meyer–Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem 10:1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diamond JM, Katz Y (1974) Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol 17:121–154

    Article  CAS  PubMed  Google Scholar 

  3. Dix JA, Kivelson D, Diamond JM (1978) Molecular motion of small nonelectrolyte molecules in lecithin bilayers. J Membr Biol 40:315–342

    Article  CAS  PubMed  Google Scholar 

  4. Kusumi A, Subczynski WK, Hyde JS (1982) Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc Natl Acad Sci U S A 79:1854–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Subczynski WK, Hyde JS, Kusumi A (1991) Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes. Biochemistry 30:8578–8590

    Article  CAS  PubMed  Google Scholar 

  6. Subczynski WK, Hyde JS, Kusumi A (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci U S A 86:4474–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pace RJ, Chan SI (1982) Molecular motions in lipid bilayers. III. Lateral and transverse diffusion in bilayers. J Chem Phys 76:4241–4247

    Article  CAS  Google Scholar 

  8. Subczynski WK, Wisniewska A (2000) Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim Pol 47:613–625

    CAS  PubMed  Google Scholar 

  9. Almeida PF, Vaz WL, Thompson TE (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–6747

    Article  CAS  PubMed  Google Scholar 

  10. Mainali L, Raguz M, Subczynski WK (2013) Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies. J Phys Chem B 117:8994–9003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Subczynski WK, Wisniewska A, Hyde JS et al (2007) Three-dimensional dynamic structure of the liquid-ordered domain as examined by a EPR oxygen probing. Biophys J 92:1573–1584

    Article  CAS  PubMed  Google Scholar 

  12. Raguz M, Mainali L, Widomska J et al (2011) Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Chem Phys Lipids 164:819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mainali L, Raguz M, O'Brien WJ et al (2013) Properties of membranes derived from the total lipids extracted from the human lens cortex and nucleus. Biochim Biophys Acta 1828:1432–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Subczynski WK, Raguz M, Widomska J et al (2012) Functions of cholesterol and the cholesterol bilayer domain specific to the fiber-cell plasma membrane of the eye lens. J Membr Biol 245:51–68

    Article  CAS  PubMed  Google Scholar 

  15. Mainali L, Raguz M, O’Brien WJ et al (2016) Changes in the properties and organization of human lens lipid membranes occurring with age. Curr Eye Res, DOI: 10.1080/02713683.2016.1231325

  16. Altenbach C, Greenhalgh DA, Khorana HG et al (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A 91:1667–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashikawa I, Yin J-J, Subczynski WK et al (1994) Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33:4947–4952

    Article  CAS  PubMed  Google Scholar 

  18. Raguz M, Mainali L, O'Brien WJ et al (2015) Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups. Exp Eye Res 132:78–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raguz M, Mainali L, O'Brien WJ et al (2015) Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes. Exp Eye Res 140:179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by grants EY015526, EB002052, and EY001931 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Karol Subczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Subczynski, W.K., Widomska, J., Mainali, L. (2017). Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes. In: Halpern, H., LaManna, J., Harrison, D., Epel, B. (eds) Oxygen Transport to Tissue XXXIX. Advances in Experimental Medicine and Biology, vol 977. Springer, Cham. https://doi.org/10.1007/978-3-319-55231-6_5

Download citation

Publish with us

Policies and ethics