On the Existence of Optimal Controls for the Fractional Continuous-Time Cucker–Smale Model

  • Agnieszka B. Malinowska
  • Tatiana Odzijewicz
  • Ewa Schmeidel
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 407)


In this work the Cucker–Smale fractional optimal control problem is proposed and studied. We show that considered problem has an optimal solution and we derive necessary conditions for this solution.


Cucker–Smale model Consensus Fractional optimal control Optimal solution Fractional analysis 



Research supported by the Polish National Science Center grant on the basis of decision DEC-2014/15/B/ST7/05270.


  1. 1.
    Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish 48(8), 1081–1088 (1982)CrossRefGoogle Scholar
  2. 2.
    Caponigro, M., Fornasier, M., Piccoli, B., Trelat, E.: Sparse stabilization and optimal control of the Cucker–Smale model. Math. Control Relat. Fields 3(4), 447–466 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 2(1), 197–227 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Degond, P., Motsch, S.: Macroscopic limit of self-driven particles with orientation interaction. C.R. Math. Acad. Sci. Paris 345(10), 555–560 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Milewski, P., Yang, X.: A simple model for biological aggregation with asymmetric sensing. Commun. Math. Sci. 6(2), 397–416 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E. 58(4), 4828–4858 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)CrossRefGoogle Scholar
  8. 8.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bagley, R., Calico, R.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14(2), 304–311 (1991)CrossRefGoogle Scholar
  10. 10.
    Baleanu, D., Tenreiro Machado, J.A., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)CrossRefMATHGoogle Scholar
  11. 11.
    Domek, S., Dworak, P.: Theoretical Developments and Applications of Non–Integer Order Systems. Lecture Notes in Electrical Engineering, vol. 357. Springer, New York (2015)MATHGoogle Scholar
  12. 12.
    Kaczorek, T.: Selected Problems of Fractional Systems Theory. Lecture Notes in Control and Information Sciences, vol. 411. Springer, Berlin (2011)MATHGoogle Scholar
  13. 13.
    Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, Inc., San Diego (1999)MATHGoogle Scholar
  14. 14.
    Hongjie, L.: Observer-type consensus protocol for a class of fractional-order uncertain multiagent systems. Abstr. Appl. Anal. 2012, 18 p (2012)Google Scholar
  15. 15.
    Kamocki, R.: On the existence of optimal solutions to fractional optimal control problems. Appl. Math. Comput. 35, 94–104 (2014)MathSciNetMATHGoogle Scholar
  16. 16.
    Kamocki, R.: Pontryagin maximum principle for fractional ordinary optimal control problems. Math. Methods Appl. Sci. 37(11), 1668–1686 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Pooseh, S., Almeida, R., Torres, D.F.M.: Fractional order optimal control problems with free terminal time. J. Ind. Manag. Optim. 10(2), 363–381 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Translated from the 1987 Russian Original. Gordon and Breach, Yverdon (1993)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Agnieszka B. Malinowska
    • 1
  • Tatiana Odzijewicz
    • 2
  • Ewa Schmeidel
    • 3
  1. 1.Faculty of Computer ScienceBialystok University of TechnologyBialystokPoland
  2. 2.Department of Mathematics and Mathematical EconomicsWarsaw School of EconomicsWarsawPoland
  3. 3.Faculty of Mathematics and Computer ScienceUniversity of BialystokBialystokPoland

Personalised recommendations