Understanding Age-Related Differences in Privacy-Safety Decisions: Acceptance of Crime Surveillance Technologies in Urban Environments

  • Julia van HeekEmail author
  • Katrin Arning
  • Martina Ziefle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9754)


Although crime surveillance technologies (CST) are incrementally used in cities all over the world to improve safety, critics and data privacy specialists fear a rising violation of urban residents’ privacy. So far, research on CST neither focuses in-depth on their acceptance nor addresses different user diversity factors. To reach a high degree of CST acceptance, not only technical parts are of importance but also human aspects and the way in which CST meet the residents’ needs. In this paper, we present the results of a conjoint analysis (CA) study regarding the acceptance of CST with special focus on the residents’ age and including the attributes locations, reduction in crime rates (safety), handling of recorded footage (privacy), and camera type. Age-specific similarities and differences in respondents’ preferences were revealed.


Crime surveillance acceptance Aging Safety Privacy Conjoint analysis 


  1. 1.
    La Vigne, N.G., Lowry, S.S., Markman, J.A., Dwyer, A.M.: Evaluating the use of public surveillance cameras for crime control and prevention. Final Technical report, The Urban Institute, Justice Policy Centre, Washington, DC (2011)Google Scholar
  2. 2.
    Lyon, D., Haggerty, K.D.: The surveillance legacies of 9/11: recalling, reflecting on, and rethinking surveillance in the privacy era. Can. J. Law Soc. 27(3), 291–300 (2012)CrossRefGoogle Scholar
  3. 3.
    Deflem, M., McDonough, S.: The fear of counterterrorism: surveillance and civil liberties since 9/11. Society 52(1), 70–79 (2015)CrossRefGoogle Scholar
  4. 4.
    Whitaker, R.: The End of Privacy: How Total Surveillance is Becoming a Reality. The New Press, New York (1999)Google Scholar
  5. 5.
    Welsh, B.C., Farrington, D.P., Taheri, S.A.: Effectiveness and social costs of public area surveillance for crime prevention. Annu. Rev. Law Soc. Sci. 11(1), 111–130 (2015)CrossRefGoogle Scholar
  6. 6.
    Ziefle, M., Schneider, C., Valeé, D., Schnettler, A., Krempels, K.H., Jarke, M.: Urban Future outline (UFO) a roadmap on research for livable cities. ERCIM News 98, 9–10 (2014)Google Scholar
  7. 7.
    Dailey, K.: The rise of CCTV surveillance in the US. BBC News Mag. (2013)Google Scholar
  8. 8.
    Barrett, D.: One surveillance camera for every 11 people in Britain, says CCTV survey. Telegraph (2013)Google Scholar
  9. 9.
    Schwartz, A.: Chicago’s video surveillance cameras: a pervasive and poorly regulated threat to our privacy. Nw. J. Technol. Intell. Prop. 11(2), 45–60 (2012)Google Scholar
  10. 10.
    Friedewald, M., van Lieshout, M., Rung, S., Ooms, M., Ypma, J.: Privacy and security perceptions of european citizens: a test of the trade-off model. In: Camenisch, J., Fischer-Hübner, S., Hansen, M. (eds.) Privacy and Identity Management for the Future Internet in the Age of Globalisation, pp. 39–53. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Jho, W.: Challenges for e-governance: protests from civil society on the protection of privacy in e-government in Korea. Int. Rev. Adm. Sci. 71(1), 151–166 (2005)CrossRefGoogle Scholar
  12. 12.
    Joh, E.E.: Privacy protests: surveillance evasion and fourth amendment suspicion. Ariz. Law Rev. 55, 997–1029 (2013)Google Scholar
  13. 13.
    Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N., Lu, M., Merkl, H., Pankati, S., Senioa, A., Shu, C., Tian, Y.L.: Smart video surveillance – exploring the concept of multiscale spatitemporal tracking. IEEE Signal Process. Mag. 22(2), 38–51 (2005)CrossRefGoogle Scholar
  14. 14.
    Sarre, R., Brooks, D., Smith, C., Draper, R.: Current and emerging technologies employed to abate crime and to promote privacy. In: Arrigo, B., Bersot, H. (eds.) The Routledge Handbook of International Crime & Justice Studies, pp. 327–349. Routledge, Abingdon (2013)Google Scholar
  15. 15.
    Cameron, A., Kolodinski, E., May, H., Williams, N.: Measuring the effects of video surveillance on crime in Los Angeles. Report for California Research Bureau, School of Policy Planning and Development, May 2008Google Scholar
  16. 16.
    Sousa, W.H., Madensen, T.D.: Citizen acceptance of police interventions: An example of CCTV surveillance in Las Vegas. Crim. Justice Stud. 29(1), 40–56 (2016)Google Scholar
  17. 17.
    Wiecek, C., Saetnan, A.R.: Restrictive? Permissive? The contradictory framing of video surveillance in Norway and Denmark. Report, Department of Sociology and Political Science, Norwegian University of Science and Technology, Trondheim (2002)Google Scholar
  18. 18.
    Boomsma, C., Steg, L.: Feeling safe in the dark: examining the effect of entrapment, lighting levels & gender on feelings of safety & lighting policy acceptability. Environ. Behav. 49(2), 193–212 (2012)Google Scholar
  19. 19.
    Van Heek, J., Arning, K., Ziefle, M.: How fear of crime affects needs for privacy & safety. Acceptance of crime surveillance technologies in smart cities. In: 5th International Conference on Smart Cities and Green ICT Systems, Rome, 23–25 April 2016Google Scholar
  20. 20.
    Sochor, J., Wester, M.: Gendered perceptions of positioning technologies. In: 5th International Conference on Women’s Issues in Transportation (2014)Google Scholar
  21. 21.
    Rogers, E.: Diffusion of Innovations. New York Free Press, New York (2003)Google Scholar
  22. 22.
    Van Heek, J., Arning, K., Ziefle, M.: Safety and privacy perceptions in public spaces: an empirical study on user requirements for city mobility. In: Giaffreda, R., Caganova, D., Li, Y., Riggio, R., Voisard, A. (eds.) LNICST 151. Springer, Heidelberg (2015)Google Scholar
  23. 23.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)CrossRefGoogle Scholar
  24. 24.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology. MIS Q. 27(3), 425–478 (2003)Google Scholar
  25. 25.
    Luce, R.D., Tukey, J.W.: Simultaneous conjoint measurement. J. Math. Psychol. 1, 1–27 (1964)CrossRefzbMATHGoogle Scholar
  26. 26.
    Orme, B.: Interpreting the Results of Conjoint Analysis, Getting Started with Conjoint Analysis, pp. 77–89. Res. Pub. LLC Madison, WI (2010)Google Scholar
  27. 27.
    SSI Web,Version 8.2.0. Sawtooth Software Inc., Sequim (2013)Google Scholar
  28. 28.
    SMRT: Market Research Tools. Sawtooth Software Inc., Sequim (2013)Google Scholar
  29. 29.
    Van Heek, J., Arning, K., Ziefle, M.: “All eyes on you!” Impact of location, camera type, and privacy-security-tradeoff on the acceptance of crime surveillance technologies. J. Urban Stud. 253–265 (submitted 2016)Google Scholar
  30. 30.
    Dickerson, A.E., Molnar, L.J., Eby, D.W., Adler, G., Bé-dard, M., Berg-Weger, M., Trujillo, L.: Transportation and aging: a research agenda for advancing safe mobility. Gerontologist 47(5), 578–590 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Julia van Heek
    • 1
    Email author
  • Katrin Arning
    • 1
  • Martina Ziefle
    • 1
  1. 1.Human-Computer Interaction CenterRWTH AachenAachenGermany

Personalised recommendations